Bandwidth reduction in rectangular grids
We show that the bandwidth of a square twodimensional grid of arbitrary size can be reduced if two (but not less than two) edges are deleted. The two deleted edges may not be chosen arbitrarily, but they may be chosen to share a common endpoint or to be non-adjacent. We also show that the bandwi...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2007 |
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2007
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/157342 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Bandwidth reduction in rectangular grids / T. Andreescu, W. Stromquist, Z. Sunic // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 1–15. — Бібліогр.: 3 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-157342 |
|---|---|
| record_format |
dspace |
| spelling |
Andreescu, T. Stromquist, W. Sunic, Z. 2019-06-20T02:42:05Z 2019-06-20T02:42:05Z 2007 Bandwidth reduction in rectangular grids / T. Andreescu, W. Stromquist, Z. Sunic // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 1–15. — Бібліогр.: 3 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 05C78. https://nasplib.isofts.kiev.ua/handle/123456789/157342 We show that the bandwidth of a square twodimensional grid of arbitrary size can be reduced if two (but not less than two) edges are deleted. The two deleted edges may not be chosen arbitrarily, but they may be chosen to share a common endpoint or to be non-adjacent. We also show that the bandwidth of the rectangular n × m (n ≤ m) grid can be reduced by k, for all k that are sufficiently small, if m − n + 2k edges are deleted. The third author was partially supported by NSF grant DMS-0600975 en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Bandwidth reduction in rectangular grids Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Bandwidth reduction in rectangular grids |
| spellingShingle |
Bandwidth reduction in rectangular grids Andreescu, T. Stromquist, W. Sunic, Z. |
| title_short |
Bandwidth reduction in rectangular grids |
| title_full |
Bandwidth reduction in rectangular grids |
| title_fullStr |
Bandwidth reduction in rectangular grids |
| title_full_unstemmed |
Bandwidth reduction in rectangular grids |
| title_sort |
bandwidth reduction in rectangular grids |
| author |
Andreescu, T. Stromquist, W. Sunic, Z. |
| author_facet |
Andreescu, T. Stromquist, W. Sunic, Z. |
| publishDate |
2007 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
We show that the bandwidth of a square twodimensional grid of arbitrary size can be reduced if two (but not
less than two) edges are deleted. The two deleted edges may not
be chosen arbitrarily, but they may be chosen to share a common
endpoint or to be non-adjacent.
We also show that the bandwidth of the rectangular n × m
(n ≤ m) grid can be reduced by k, for all k that are sufficiently
small, if m − n + 2k edges are deleted.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/157342 |
| citation_txt |
Bandwidth reduction in rectangular grids / T. Andreescu, W. Stromquist, Z. Sunic // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 1–15. — Бібліогр.: 3 назв. — англ. |
| work_keys_str_mv |
AT andreescut bandwidthreductioninrectangulargrids AT stromquistw bandwidthreductioninrectangulargrids AT sunicz bandwidthreductioninrectangulargrids |
| first_indexed |
2025-12-02T09:27:12Z |
| last_indexed |
2025-12-02T09:27:12Z |
| _version_ |
1850862101404319744 |