R-S correspondence for the Hyper-octahedral group of type Bn - A different approach

In this paper we develop a Robinson Schensted algorithm for the hyperoctahedral group of type Bn on partitions of ( 1 2 r(r + 1) + 2n) whose 2−core is δr, r ≥ 0 where δr is the partition with parts (r, r−1, . . . , 0). We derive some combinatorial properties associated with this correspondenc...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2007
Main Authors: Parvathi, M., Sivakumar, B., Tamilselvi, A.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2007
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/157345
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:R-S correspondence for the Hyper-octahedral group of type Bn - A different approach / M. Parvathi, B. Sivakumar, A. Tamilselvi // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 86–107. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-157345
record_format dspace
spelling Parvathi, M.
Sivakumar, B.
Tamilselvi, A.
2019-06-20T02:43:00Z
2019-06-20T02:43:00Z
2007
R-S correspondence for the Hyper-octahedral group of type Bn - A different approach / M. Parvathi, B. Sivakumar, A. Tamilselvi // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 86–107. — Бібліогр.: 15 назв. — англ.
1726-3255
2000 Mathematics Subject Classification: 05E10, 20C30
https://nasplib.isofts.kiev.ua/handle/123456789/157345
In this paper we develop a Robinson Schensted algorithm for the hyperoctahedral group of type Bn on partitions of ( 1 2 r(r + 1) + 2n) whose 2−core is δr, r ≥ 0 where δr is the partition with parts (r, r−1, . . . , 0). We derive some combinatorial properties associated with this correspondence.
We would like to express our sincere thanks to the referee for his comments and suggestions for the improvement of the paper.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
R-S correspondence for the Hyper-octahedral group of type Bn - A different approach
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title R-S correspondence for the Hyper-octahedral group of type Bn - A different approach
spellingShingle R-S correspondence for the Hyper-octahedral group of type Bn - A different approach
Parvathi, M.
Sivakumar, B.
Tamilselvi, A.
title_short R-S correspondence for the Hyper-octahedral group of type Bn - A different approach
title_full R-S correspondence for the Hyper-octahedral group of type Bn - A different approach
title_fullStr R-S correspondence for the Hyper-octahedral group of type Bn - A different approach
title_full_unstemmed R-S correspondence for the Hyper-octahedral group of type Bn - A different approach
title_sort r-s correspondence for the hyper-octahedral group of type bn - a different approach
author Parvathi, M.
Sivakumar, B.
Tamilselvi, A.
author_facet Parvathi, M.
Sivakumar, B.
Tamilselvi, A.
publishDate 2007
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description In this paper we develop a Robinson Schensted algorithm for the hyperoctahedral group of type Bn on partitions of ( 1 2 r(r + 1) + 2n) whose 2−core is δr, r ≥ 0 where δr is the partition with parts (r, r−1, . . . , 0). We derive some combinatorial properties associated with this correspondence.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/157345
citation_txt R-S correspondence for the Hyper-octahedral group of type Bn - A different approach / M. Parvathi, B. Sivakumar, A. Tamilselvi // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 86–107. — Бібліогр.: 15 назв. — англ.
work_keys_str_mv AT parvathim rscorrespondenceforthehyperoctahedralgroupoftypebnadifferentapproach
AT sivakumarb rscorrespondenceforthehyperoctahedralgroupoftypebnadifferentapproach
AT tamilselvia rscorrespondenceforthehyperoctahedralgroupoftypebnadifferentapproach
first_indexed 2025-12-07T20:55:39Z
last_indexed 2025-12-07T20:55:39Z
_version_ 1850884425767714816