R-S correspondence for the Hyper-octahedral group of type Bn - A different approach
In this paper we develop a Robinson Schensted algorithm for the hyperoctahedral group of type Bn on partitions of ( 1 2 r(r + 1) + 2n) whose 2−core is δr, r ≥ 0 where δr is the partition with parts (r, r−1, . . . , 0). We derive some combinatorial properties associated with this correspondenc...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2007 |
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2007
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/157345 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | R-S correspondence for the Hyper-octahedral group of type Bn - A different approach / M. Parvathi, B. Sivakumar, A. Tamilselvi // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 86–107. — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-157345 |
|---|---|
| record_format |
dspace |
| spelling |
Parvathi, M. Sivakumar, B. Tamilselvi, A. 2019-06-20T02:43:00Z 2019-06-20T02:43:00Z 2007 R-S correspondence for the Hyper-octahedral group of type Bn - A different approach / M. Parvathi, B. Sivakumar, A. Tamilselvi // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 86–107. — Бібліогр.: 15 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 05E10, 20C30 https://nasplib.isofts.kiev.ua/handle/123456789/157345 In this paper we develop a Robinson Schensted algorithm for the hyperoctahedral group of type Bn on partitions of ( 1 2 r(r + 1) + 2n) whose 2−core is δr, r ≥ 0 where δr is the partition with parts (r, r−1, . . . , 0). We derive some combinatorial properties associated with this correspondence. We would like to express our sincere thanks to the referee for his comments and suggestions for the improvement of the paper. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics R-S correspondence for the Hyper-octahedral group of type Bn - A different approach Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
R-S correspondence for the Hyper-octahedral group of type Bn - A different approach |
| spellingShingle |
R-S correspondence for the Hyper-octahedral group of type Bn - A different approach Parvathi, M. Sivakumar, B. Tamilselvi, A. |
| title_short |
R-S correspondence for the Hyper-octahedral group of type Bn - A different approach |
| title_full |
R-S correspondence for the Hyper-octahedral group of type Bn - A different approach |
| title_fullStr |
R-S correspondence for the Hyper-octahedral group of type Bn - A different approach |
| title_full_unstemmed |
R-S correspondence for the Hyper-octahedral group of type Bn - A different approach |
| title_sort |
r-s correspondence for the hyper-octahedral group of type bn - a different approach |
| author |
Parvathi, M. Sivakumar, B. Tamilselvi, A. |
| author_facet |
Parvathi, M. Sivakumar, B. Tamilselvi, A. |
| publishDate |
2007 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
In this paper we develop a Robinson Schensted
algorithm for the hyperoctahedral group of type Bn on partitions
of (
1
2
r(r + 1) + 2n) whose 2−core is δr, r ≥ 0 where δr is the
partition with parts (r, r−1, . . . , 0). We derive some combinatorial
properties associated with this correspondence.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/157345 |
| citation_txt |
R-S correspondence for the Hyper-octahedral group of type Bn - A different approach / M. Parvathi, B. Sivakumar, A. Tamilselvi // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 86–107. — Бібліогр.: 15 назв. — англ. |
| work_keys_str_mv |
AT parvathim rscorrespondenceforthehyperoctahedralgroupoftypebnadifferentapproach AT sivakumarb rscorrespondenceforthehyperoctahedralgroupoftypebnadifferentapproach AT tamilselvia rscorrespondenceforthehyperoctahedralgroupoftypebnadifferentapproach |
| first_indexed |
2025-12-07T20:55:39Z |
| last_indexed |
2025-12-07T20:55:39Z |
| _version_ |
1850884425767714816 |