On Frobenius full matrix algebras with structure systems
Let n ≥ 2 be an integer. In [5] and [6], an n × n A-full matrix algebra over a field K is defined to be the set Mn(K) of all square n × n matrices with coefficients in K equipped with a multiplication defined by a structure system A, that is, an n-tuple of n × n matrices with certain properties....
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2007 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2007
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/157356 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On Frobenius full matrix algebras with structure systems / H. Fujita, Y. Sakai, D. Simson // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 24–39. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-157356 |
|---|---|
| record_format |
dspace |
| spelling |
Fujita, H. Sakai, Y. Simson, D. 2019-06-20T02:46:10Z 2019-06-20T02:46:10Z 2007 On Frobenius full matrix algebras with structure systems / H. Fujita, Y. Sakai, D. Simson // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 24–39. — Бібліогр.: 13 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 16G10, 16G30, 16G60. https://nasplib.isofts.kiev.ua/handle/123456789/157356 Let n ≥ 2 be an integer. In [5] and [6], an n × n A-full matrix algebra over a field K is defined to be the set Mn(K) of all square n × n matrices with coefficients in K equipped with a multiplication defined by a structure system A, that is, an n-tuple of n × n matrices with certain properties. In [5] and [6], mainly A-full matrix algebras having (0, 1)-structure systems are studied, that is, the structure systems A such that all entries are 0 or 1. In the present paper we study A-full matrix algebras having non (0, 1)-structure systems. In particular, we study the Frobenius Afull matrix algebras. Several infinite families of such algebras with nice properties are constructed in Section 4. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics On Frobenius full matrix algebras with structure systems Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On Frobenius full matrix algebras with structure systems |
| spellingShingle |
On Frobenius full matrix algebras with structure systems Fujita, H. Sakai, Y. Simson, D. |
| title_short |
On Frobenius full matrix algebras with structure systems |
| title_full |
On Frobenius full matrix algebras with structure systems |
| title_fullStr |
On Frobenius full matrix algebras with structure systems |
| title_full_unstemmed |
On Frobenius full matrix algebras with structure systems |
| title_sort |
on frobenius full matrix algebras with structure systems |
| author |
Fujita, H. Sakai, Y. Simson, D. |
| author_facet |
Fujita, H. Sakai, Y. Simson, D. |
| publishDate |
2007 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Let n ≥ 2 be an integer. In [5] and [6], an n × n
A-full matrix algebra over a field K is defined to be the set Mn(K)
of all square n × n matrices with coefficients in K equipped with a
multiplication defined by a structure system A, that is, an n-tuple
of n × n matrices with certain properties. In [5] and [6], mainly
A-full matrix algebras having (0, 1)-structure systems are studied,
that is, the structure systems A such that all entries are 0 or 1.
In the present paper we study A-full matrix algebras having non
(0, 1)-structure systems. In particular, we study the Frobenius Afull matrix algebras. Several infinite families of such algebras with
nice properties are constructed in Section 4.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/157356 |
| citation_txt |
On Frobenius full matrix algebras with structure systems / H. Fujita, Y. Sakai, D. Simson // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 24–39. — Бібліогр.: 13 назв. — англ. |
| work_keys_str_mv |
AT fujitah onfrobeniusfullmatrixalgebraswithstructuresystems AT sakaiy onfrobeniusfullmatrixalgebraswithstructuresystems AT simsond onfrobeniusfullmatrixalgebraswithstructuresystems |
| first_indexed |
2025-12-07T16:06:33Z |
| last_indexed |
2025-12-07T16:06:33Z |
| _version_ |
1850866236759474176 |