On Frobenius full matrix algebras with structure systems

Let n ≥ 2 be an integer. In [5] and [6], an n × n A-full matrix algebra over a field K is defined to be the set Mn(K) of all square n × n matrices with coefficients in K equipped with a multiplication defined by a structure system A, that is, an n-tuple of n × n matrices with certain properties....

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2007
Автори: Fujita, H., Sakai, Y., Simson, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2007
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/157356
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Frobenius full matrix algebras with structure systems / H. Fujita, Y. Sakai, D. Simson // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 24–39. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-157356
record_format dspace
spelling Fujita, H.
Sakai, Y.
Simson, D.
2019-06-20T02:46:10Z
2019-06-20T02:46:10Z
2007
On Frobenius full matrix algebras with structure systems / H. Fujita, Y. Sakai, D. Simson // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 24–39. — Бібліогр.: 13 назв. — англ.
1726-3255
2000 Mathematics Subject Classification: 16G10, 16G30, 16G60.
https://nasplib.isofts.kiev.ua/handle/123456789/157356
Let n ≥ 2 be an integer. In [5] and [6], an n × n A-full matrix algebra over a field K is defined to be the set Mn(K) of all square n × n matrices with coefficients in K equipped with a multiplication defined by a structure system A, that is, an n-tuple of n × n matrices with certain properties. In [5] and [6], mainly A-full matrix algebras having (0, 1)-structure systems are studied, that is, the structure systems A such that all entries are 0 or 1. In the present paper we study A-full matrix algebras having non (0, 1)-structure systems. In particular, we study the Frobenius Afull matrix algebras. Several infinite families of such algebras with nice properties are constructed in Section 4.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On Frobenius full matrix algebras with structure systems
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On Frobenius full matrix algebras with structure systems
spellingShingle On Frobenius full matrix algebras with structure systems
Fujita, H.
Sakai, Y.
Simson, D.
title_short On Frobenius full matrix algebras with structure systems
title_full On Frobenius full matrix algebras with structure systems
title_fullStr On Frobenius full matrix algebras with structure systems
title_full_unstemmed On Frobenius full matrix algebras with structure systems
title_sort on frobenius full matrix algebras with structure systems
author Fujita, H.
Sakai, Y.
Simson, D.
author_facet Fujita, H.
Sakai, Y.
Simson, D.
publishDate 2007
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Let n ≥ 2 be an integer. In [5] and [6], an n × n A-full matrix algebra over a field K is defined to be the set Mn(K) of all square n × n matrices with coefficients in K equipped with a multiplication defined by a structure system A, that is, an n-tuple of n × n matrices with certain properties. In [5] and [6], mainly A-full matrix algebras having (0, 1)-structure systems are studied, that is, the structure systems A such that all entries are 0 or 1. In the present paper we study A-full matrix algebras having non (0, 1)-structure systems. In particular, we study the Frobenius Afull matrix algebras. Several infinite families of such algebras with nice properties are constructed in Section 4.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/157356
citation_txt On Frobenius full matrix algebras with structure systems / H. Fujita, Y. Sakai, D. Simson // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 24–39. — Бібліогр.: 13 назв. — англ.
work_keys_str_mv AT fujitah onfrobeniusfullmatrixalgebraswithstructuresystems
AT sakaiy onfrobeniusfullmatrixalgebraswithstructuresystems
AT simsond onfrobeniusfullmatrixalgebraswithstructuresystems
first_indexed 2025-12-07T16:06:33Z
last_indexed 2025-12-07T16:06:33Z
_version_ 1850866236759474176