On H-closed topological semigroups and semilattices
In this paper, we show that if S is an H-closed topological semigroup and e is an idempotent of S, then eSe is an H-closed topological semigroup. We give sufficient conditions on a linearly ordered topological semilattice to be H-closed. Also we prove that any H-closed locally compact topologica...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2007 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2007
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/157357 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On H-closed topological semigroups and semilattices / I. Chuchman, O. Gutik // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 13–23. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | In this paper, we show that if S is an H-closed
topological semigroup and e is an idempotent of S, then eSe is
an H-closed topological semigroup. We give sufficient conditions
on a linearly ordered topological semilattice to be H-closed. Also
we prove that any H-closed locally compact topological semilattice
and any H-closed topological weakly U-semilattice contain minimal idempotents. An example of a countably compact topological
semilattice whose topological space is H-closed is constructed.
|
|---|---|
| ISSN: | 1726-3255 |