On H-closed topological semigroups and semilattices
In this paper, we show that if S is an H-closed topological semigroup and e is an idempotent of S, then eSe is an H-closed topological semigroup. We give sufficient conditions on a linearly ordered topological semilattice to be H-closed. Also we prove that any H-closed locally compact topologica...
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2007 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2007
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/157357 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On H-closed topological semigroups and semilattices / I. Chuchman, O. Gutik // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 13–23. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-157357 |
|---|---|
| record_format |
dspace |
| spelling |
Chuchman, I. Gutik, O. 2019-06-20T02:46:23Z 2019-06-20T02:46:23Z 2007 On H-closed topological semigroups and semilattices / I. Chuchman, O. Gutik // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 13–23. — Бібліогр.: 10 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 06A12, 06F30; 22A15, 22A26, 54H12. https://nasplib.isofts.kiev.ua/handle/123456789/157357 In this paper, we show that if S is an H-closed topological semigroup and e is an idempotent of S, then eSe is an H-closed topological semigroup. We give sufficient conditions on a linearly ordered topological semilattice to be H-closed. Also we prove that any H-closed locally compact topological semilattice and any H-closed topological weakly U-semilattice contain minimal idempotents. An example of a countably compact topological semilattice whose topological space is H-closed is constructed. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics On H-closed topological semigroups and semilattices Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On H-closed topological semigroups and semilattices |
| spellingShingle |
On H-closed topological semigroups and semilattices Chuchman, I. Gutik, O. |
| title_short |
On H-closed topological semigroups and semilattices |
| title_full |
On H-closed topological semigroups and semilattices |
| title_fullStr |
On H-closed topological semigroups and semilattices |
| title_full_unstemmed |
On H-closed topological semigroups and semilattices |
| title_sort |
on h-closed topological semigroups and semilattices |
| author |
Chuchman, I. Gutik, O. |
| author_facet |
Chuchman, I. Gutik, O. |
| publishDate |
2007 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
In this paper, we show that if S is an H-closed
topological semigroup and e is an idempotent of S, then eSe is
an H-closed topological semigroup. We give sufficient conditions
on a linearly ordered topological semilattice to be H-closed. Also
we prove that any H-closed locally compact topological semilattice
and any H-closed topological weakly U-semilattice contain minimal idempotents. An example of a countably compact topological
semilattice whose topological space is H-closed is constructed.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/157357 |
| citation_txt |
On H-closed topological semigroups and semilattices / I. Chuchman, O. Gutik // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 13–23. — Бібліогр.: 10 назв. — англ. |
| work_keys_str_mv |
AT chuchmani onhclosedtopologicalsemigroupsandsemilattices AT gutiko onhclosedtopologicalsemigroupsandsemilattices |
| first_indexed |
2025-11-30T13:01:53Z |
| last_indexed |
2025-11-30T13:01:53Z |
| _version_ |
1850857668641554432 |