Weighted partially orderd sets of finite type
We define representations of weighted posets and construct for them reflection functors. Using this technique we prove that a weighted poset is of finite representation type if and only if its Tits form is weakly positive; then indecomposable representations are in one-to-one correspondence with...
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2006 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2006
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/157358 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Weighted partially orderd sets of finite type / O. Drozd-Koroleva // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 2. — С. 36–49. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | We define representations of weighted posets and
construct for them reflection functors. Using this technique we
prove that a weighted poset is of finite representation type if and
only if its Tits form is weakly positive; then indecomposable representations are in one-to-one correspondence with the positive roots
of the Tits form.
|
|---|---|
| ISSN: | 1726-3255 |