τ-complemented and τ-supplemented modules

Proper classes of monomorphisms and short exact sequences were introduced by Buchsbaum to study relative homological algebra. It was observed in abelian group theory that complement submodules induce a proper class of monomorphisms and this observations were extended to modules by Stenstr¨om, Gene...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2006
Автори: Al-Takhman, K., Lomp, C., Wisbauer, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2006
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/157359
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:τ-complemented and τ-supplemented modules / K. Al-Takhman, C. Lomp, R. Wisbauer // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 3. — С. 1–15. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-157359
record_format dspace
spelling Al-Takhman, K.
Lomp, C.
Wisbauer, R.
2019-06-20T02:47:01Z
2019-06-20T02:47:01Z
2006
τ-complemented and τ-supplemented modules / K. Al-Takhman, C. Lomp, R. Wisbauer // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 3. — С. 1–15. — Бібліогр.: 17 назв. — англ.
1726-3255
2000 Mathematics Subject Classification: 16D90, 16E50, 16.E99.
https://nasplib.isofts.kiev.ua/handle/123456789/157359
Proper classes of monomorphisms and short exact sequences were introduced by Buchsbaum to study relative homological algebra. It was observed in abelian group theory that complement submodules induce a proper class of monomorphisms and this observations were extended to modules by Stenstr¨om, Generalov, and others. In this note we consider complements and supplements with respect to (idempotent) radicals and study the related proper classes of short exact sequences.
This paper was initiated during a visit of K. Al-Takhman at the Heinrich Heine University of D¨usseldorf. He wishes to thank the Department of Mathematics for the hospitality and also the DAAD, German Academic Exchange Service, for the financial support.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
τ-complemented and τ-supplemented modules
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title τ-complemented and τ-supplemented modules
spellingShingle τ-complemented and τ-supplemented modules
Al-Takhman, K.
Lomp, C.
Wisbauer, R.
title_short τ-complemented and τ-supplemented modules
title_full τ-complemented and τ-supplemented modules
title_fullStr τ-complemented and τ-supplemented modules
title_full_unstemmed τ-complemented and τ-supplemented modules
title_sort τ-complemented and τ-supplemented modules
author Al-Takhman, K.
Lomp, C.
Wisbauer, R.
author_facet Al-Takhman, K.
Lomp, C.
Wisbauer, R.
publishDate 2006
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Proper classes of monomorphisms and short exact sequences were introduced by Buchsbaum to study relative homological algebra. It was observed in abelian group theory that complement submodules induce a proper class of monomorphisms and this observations were extended to modules by Stenstr¨om, Generalov, and others. In this note we consider complements and supplements with respect to (idempotent) radicals and study the related proper classes of short exact sequences.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/157359
citation_txt τ-complemented and τ-supplemented modules / K. Al-Takhman, C. Lomp, R. Wisbauer // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 3. — С. 1–15. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT altakhmank τcomplementedandτsupplementedmodules
AT lompc τcomplementedandτsupplementedmodules
AT wisbauerr τcomplementedandτsupplementedmodules
first_indexed 2025-12-07T20:25:36Z
last_indexed 2025-12-07T20:25:36Z
_version_ 1850882534778339328