Automorphisms of kaleidoscopical graphs

A regular connected graph Γ of degree s is called kaleidoscopical if there is a (s + 1)-coloring of the set of its vertices such that every unit ball in Γ has no distinct monochrome points. The kaleidoscopical graphs can be considered as a graph counterpart of the Hamming codes. We describe the g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2007
Hauptverfasser: Protasov, I.V., Protasova, K.D.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2007
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/157366
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Automorphisms of kaleidoscopical graphs / I.V. Protasov, K.D. Protasova // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 125–129. — Бібліогр.: 1 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:A regular connected graph Γ of degree s is called kaleidoscopical if there is a (s + 1)-coloring of the set of its vertices such that every unit ball in Γ has no distinct monochrome points. The kaleidoscopical graphs can be considered as a graph counterpart of the Hamming codes. We describe the groups of automorphisms of kaleidoscopical trees and Hamming graphs. We show also that every finitely generated group can be realized as the group of automorphisms of some kaleidoscopical graphs.
ISSN:1726-3255