Automorphisms of kaleidoscopical graphs
A regular connected graph Γ of degree s is called kaleidoscopical if there is a (s + 1)-coloring of the set of its vertices such that every unit ball in Γ has no distinct monochrome points. The kaleidoscopical graphs can be considered as a graph counterpart of the Hamming codes. We describe the g...
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2007 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2007
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/157366 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Automorphisms of kaleidoscopical graphs / I.V. Protasov, K.D. Protasova // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 125–129. — Бібліогр.: 1 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | A regular connected graph Γ of degree s is called
kaleidoscopical if there is a (s + 1)-coloring of the set of its vertices such that every unit ball in Γ has no distinct monochrome
points. The kaleidoscopical graphs can be considered as a graph
counterpart of the Hamming codes. We describe the groups of automorphisms of kaleidoscopical trees and Hamming graphs. We
show also that every finitely generated group can be realized as the
group of automorphisms of some kaleidoscopical graphs.
|
|---|---|
| ISSN: | 1726-3255 |