Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups

Let φ : G → G be a group endomorphism where G is a finitely generated group of exponential growth, and denote by R(φ) the number of twisted φ-conjugacy classes. Fel’shtyn and Hill [7] conjectured that if φ is injective, then R(φ) is infinite. This conjecture is true for automorphisms of non-elem...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2006
Автори: Fel’shtyn, A., Goncalves, D.L.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2006
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/157372
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups / A. Fel’shtyn, D.L. Goncalves // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 3. — С. 36–48. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-157372
record_format dspace
spelling Fel’shtyn, A.
Goncalves, D.L.
2019-06-20T03:07:55Z
2019-06-20T03:07:55Z
2006
Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups / A. Fel’shtyn, D.L. Goncalves // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 3. — С. 36–48. — Бібліогр.: 22 назв. — англ.
1726-3255
2000 Mathematics Subject Classification: 20E45, 37C25, 55M20.
https://nasplib.isofts.kiev.ua/handle/123456789/157372
Let φ : G → G be a group endomorphism where G is a finitely generated group of exponential growth, and denote by R(φ) the number of twisted φ-conjugacy classes. Fel’shtyn and Hill [7] conjectured that if φ is injective, then R(φ) is infinite. This conjecture is true for automorphisms of non-elementary Gromov hyperbolic groups, see [17] and [6]. It was showed in [12] that the conjecture does not hold in general. Nevertheless in this paper, we show that the conjecture holds for injective homomorphisms for the family of the Baumslag-Solitar groups B(m,n) where m 6= n and either m or n is greater than 1, and for automorphisms for the case m = n > 1. family of the Baumslag-Solitar groups B(m,n) where m 6= n.
This work was initiated during the visit of the second author to Siegen University from September 13 to September 20, 2003. The visit was partially supported by a grant of the “Projeto tem´atico Topologia Alg´ebrica e Geom´etrica-FAPESP". The second author would like to thank Professor U. Koschorke for making this visit possible and for the hospitality.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups
spellingShingle Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups
Fel’shtyn, A.
Goncalves, D.L.
title_short Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups
title_full Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups
title_fullStr Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups
title_full_unstemmed Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups
title_sort twisted conjugacy classes of automorphisms of baumslag-solitar groups
author Fel’shtyn, A.
Goncalves, D.L.
author_facet Fel’shtyn, A.
Goncalves, D.L.
publishDate 2006
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Let φ : G → G be a group endomorphism where G is a finitely generated group of exponential growth, and denote by R(φ) the number of twisted φ-conjugacy classes. Fel’shtyn and Hill [7] conjectured that if φ is injective, then R(φ) is infinite. This conjecture is true for automorphisms of non-elementary Gromov hyperbolic groups, see [17] and [6]. It was showed in [12] that the conjecture does not hold in general. Nevertheless in this paper, we show that the conjecture holds for injective homomorphisms for the family of the Baumslag-Solitar groups B(m,n) where m 6= n and either m or n is greater than 1, and for automorphisms for the case m = n > 1. family of the Baumslag-Solitar groups B(m,n) where m 6= n.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/157372
fulltext
citation_txt Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups / A. Fel’shtyn, D.L. Goncalves // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 3. — С. 36–48. — Бібліогр.: 22 назв. — англ.
work_keys_str_mv AT felshtyna twistedconjugacyclassesofautomorphismsofbaumslagsolitargroups
AT goncalvesdl twistedconjugacyclassesofautomorphismsofbaumslagsolitargroups
first_indexed 2025-11-25T20:56:21Z
last_indexed 2025-11-25T20:56:21Z
_version_ 1850538899613417472