Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups
Let φ : G → G be a group endomorphism where G is a finitely generated group of exponential growth, and denote by R(φ) the number of twisted φ-conjugacy classes. Fel’shtyn and Hill [7] conjectured that if φ is injective, then R(φ) is infinite. This conjecture is true for automorphisms of non-elem...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2006 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2006
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/157372 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups / A. Fel’shtyn, D.L. Goncalves // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 3. — С. 36–48. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-157372 |
|---|---|
| record_format |
dspace |
| spelling |
Fel’shtyn, A. Goncalves, D.L. 2019-06-20T03:07:55Z 2019-06-20T03:07:55Z 2006 Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups / A. Fel’shtyn, D.L. Goncalves // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 3. — С. 36–48. — Бібліогр.: 22 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 20E45, 37C25, 55M20. https://nasplib.isofts.kiev.ua/handle/123456789/157372 Let φ : G → G be a group endomorphism where G is a finitely generated group of exponential growth, and denote by R(φ) the number of twisted φ-conjugacy classes. Fel’shtyn and Hill [7] conjectured that if φ is injective, then R(φ) is infinite. This conjecture is true for automorphisms of non-elementary Gromov hyperbolic groups, see [17] and [6]. It was showed in [12] that the conjecture does not hold in general. Nevertheless in this paper, we show that the conjecture holds for injective homomorphisms for the family of the Baumslag-Solitar groups B(m,n) where m 6= n and either m or n is greater than 1, and for automorphisms for the case m = n > 1. family of the Baumslag-Solitar groups B(m,n) where m 6= n. This work was initiated during the visit of the second author to Siegen University from September 13 to September 20, 2003. The visit was partially supported by a grant of the “Projeto tem´atico Topologia Alg´ebrica e Geom´etrica-FAPESP". The second author would like to thank Professor U. Koschorke for making this visit possible and for the hospitality. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups |
| spellingShingle |
Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups Fel’shtyn, A. Goncalves, D.L. |
| title_short |
Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups |
| title_full |
Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups |
| title_fullStr |
Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups |
| title_full_unstemmed |
Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups |
| title_sort |
twisted conjugacy classes of automorphisms of baumslag-solitar groups |
| author |
Fel’shtyn, A. Goncalves, D.L. |
| author_facet |
Fel’shtyn, A. Goncalves, D.L. |
| publishDate |
2006 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Let φ : G → G be a group endomorphism where
G is a finitely generated group of exponential growth, and denote
by R(φ) the number of twisted φ-conjugacy classes. Fel’shtyn and
Hill [7] conjectured that if φ is injective, then R(φ) is infinite. This
conjecture is true for automorphisms of non-elementary Gromov
hyperbolic groups, see [17] and [6]. It was showed in [12] that the
conjecture does not hold in general. Nevertheless in this paper,
we show that the conjecture holds for injective homomorphisms for
the family of the Baumslag-Solitar groups B(m,n) where m 6= n
and either m or n is greater than 1, and for automorphisms for the
case m = n > 1. family of the Baumslag-Solitar groups B(m,n)
where m 6= n.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/157372 |
| fulltext |
|
| citation_txt |
Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups / A. Fel’shtyn, D.L. Goncalves // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 3. — С. 36–48. — Бібліогр.: 22 назв. — англ. |
| work_keys_str_mv |
AT felshtyna twistedconjugacyclassesofautomorphismsofbaumslagsolitargroups AT goncalvesdl twistedconjugacyclassesofautomorphismsofbaumslagsolitargroups |
| first_indexed |
2025-11-25T20:56:21Z |
| last_indexed |
2025-11-25T20:56:21Z |
| _version_ |
1850538899613417472 |