On the Amitsur property of radicals
The Amitsur property of a radical says that the radical of a polynomial ring is again a polynomial ring. A hereditary radical γ has the Amitsur property if and only if its semisimple class is polynomially extensible and satisfies: f(x) ∈ γ(A[x]) implies f(0) ∈ γ(A[x]). Applying this criterion, i...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2006 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2006
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/157377 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | On the Amitsur property of radicals / N.V. Loi, R. Wiegandt // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 3. — С. 92–100. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | The Amitsur property of a radical says that
the radical of a polynomial ring is again a polynomial ring. A
hereditary radical γ has the Amitsur property if and only if its
semisimple class is polynomially extensible and satisfies: f(x) ∈
γ(A[x]) implies f(0) ∈ γ(A[x]). Applying this criterion, it is proved
that the generalized nil radical has the Amitsur property. In this
way the Amitsur property of a not necessarily hereditary normal
radical can be checked.
|
|---|---|
| ISSN: | 1726-3255 |