On the Amitsur property of radicals

The Amitsur property of a radical says that the radical of a polynomial ring is again a polynomial ring. A hereditary radical γ has the Amitsur property if and only if its semisimple class is polynomially extensible and satisfies: f(x) ∈ γ(A[x]) implies f(0) ∈ γ(A[x]). Applying this criterion, i...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2006
Main Authors: Loi, N.V., Wiegandt, R.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2006
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/157377
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On the Amitsur property of radicals / N.V. Loi, R. Wiegandt // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 3. — С. 92–100. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:The Amitsur property of a radical says that the radical of a polynomial ring is again a polynomial ring. A hereditary radical γ has the Amitsur property if and only if its semisimple class is polynomially extensible and satisfies: f(x) ∈ γ(A[x]) implies f(0) ∈ γ(A[x]). Applying this criterion, it is proved that the generalized nil radical has the Amitsur property. In this way the Amitsur property of a not necessarily hereditary normal radical can be checked.
ISSN:1726-3255