On the Amitsur property of radicals

The Amitsur property of a radical says that the radical of a polynomial ring is again a polynomial ring. A hereditary radical γ has the Amitsur property if and only if its semisimple class is polynomially extensible and satisfies: f(x) ∈ γ(A[x]) implies f(0) ∈ γ(A[x]). Applying this criterion, i...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2006
Main Authors: Loi, N.V., Wiegandt, R.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2006
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/157377
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On the Amitsur property of radicals / N.V. Loi, R. Wiegandt // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 3. — С. 92–100. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-157377
record_format dspace
spelling Loi, N.V.
Wiegandt, R.
2019-06-20T03:08:45Z
2019-06-20T03:08:45Z
2006
On the Amitsur property of radicals / N.V. Loi, R. Wiegandt // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 3. — С. 92–100. — Бібліогр.: 9 назв. — англ.
1726-3255
2000 Mathematics Subject Classification: 16N60.
https://nasplib.isofts.kiev.ua/handle/123456789/157377
The Amitsur property of a radical says that the radical of a polynomial ring is again a polynomial ring. A hereditary radical γ has the Amitsur property if and only if its semisimple class is polynomially extensible and satisfies: f(x) ∈ γ(A[x]) implies f(0) ∈ γ(A[x]). Applying this criterion, it is proved that the generalized nil radical has the Amitsur property. In this way the Amitsur property of a not necessarily hereditary normal radical can be checked.
Research supported by the Hungarian OTKA Grant # T043034
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On the Amitsur property of radicals
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the Amitsur property of radicals
spellingShingle On the Amitsur property of radicals
Loi, N.V.
Wiegandt, R.
title_short On the Amitsur property of radicals
title_full On the Amitsur property of radicals
title_fullStr On the Amitsur property of radicals
title_full_unstemmed On the Amitsur property of radicals
title_sort on the amitsur property of radicals
author Loi, N.V.
Wiegandt, R.
author_facet Loi, N.V.
Wiegandt, R.
publishDate 2006
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description The Amitsur property of a radical says that the radical of a polynomial ring is again a polynomial ring. A hereditary radical γ has the Amitsur property if and only if its semisimple class is polynomially extensible and satisfies: f(x) ∈ γ(A[x]) implies f(0) ∈ γ(A[x]). Applying this criterion, it is proved that the generalized nil radical has the Amitsur property. In this way the Amitsur property of a not necessarily hereditary normal radical can be checked.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/157377
citation_txt On the Amitsur property of radicals / N.V. Loi, R. Wiegandt // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 3. — С. 92–100. — Бібліогр.: 9 назв. — англ.
work_keys_str_mv AT loinv ontheamitsurpropertyofradicals
AT wiegandtr ontheamitsurpropertyofradicals
first_indexed 2025-12-07T16:43:07Z
last_indexed 2025-12-07T16:43:07Z
_version_ 1850868537657131008