On the Amitsur property of radicals
The Amitsur property of a radical says that the radical of a polynomial ring is again a polynomial ring. A hereditary radical γ has the Amitsur property if and only if its semisimple class is polynomially extensible and satisfies: f(x) ∈ γ(A[x]) implies f(0) ∈ γ(A[x]). Applying this criterion, i...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2006 |
| Main Authors: | Loi, N.V., Wiegandt, R. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2006
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/157377 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | On the Amitsur property of radicals / N.V. Loi, R. Wiegandt // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 3. — С. 92–100. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
On the Amitsur property of radicals
by: Loi, N. V., et al.
Published: (2018) -
History of the conferences on Radical Theory
by: Marki, L., et al.
Published: (2018) -
Open problems in Radical theory (ICOR-2006)
by: Gardner, B. J., et al.
Published: (2018) -
Open problems in Radical theory (ICOR-2006)
by: Gardner, B.J., et al.
Published: (2007) -
T-radical and strongly T-radical supplemented modules
by: B. Koşar, et al.
Published: (2016)