A construction of dual box
Let R be a quasi-hereditary algebra, F(∆) and F(∇) its categories of good and cogood modules correspondingly. In [6] these categories were characterized as the categories of representations of some boxes A = A∆ and A∇. These last are the box theory counterparts of Ringel duality ([8]). We present...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2006 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2006
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/157387 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | A construction of dual box / S. Ovsienko // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 2. — С. 77–86. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-157387 |
|---|---|
| record_format |
dspace |
| spelling |
Ovsienko, S. 2019-06-20T03:11:10Z 2019-06-20T03:11:10Z 2006 A construction of dual box / S. Ovsienko // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 2. — С. 77–86. — Бібліогр.: 8 назв. — англ. 1726-3255 https://nasplib.isofts.kiev.ua/handle/123456789/157387 2000 Mathematics Subject Classification: 16E30,16E35. Let R be a quasi-hereditary algebra, F(∆) and F(∇) its categories of good and cogood modules correspondingly. In [6] these categories were characterized as the categories of representations of some boxes A = A∆ and A∇. These last are the box theory counterparts of Ringel duality ([8]). We present an implicit construction of the box B such that B − mo is equivalent to F(∇). en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics A construction of dual box Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
A construction of dual box |
| spellingShingle |
A construction of dual box Ovsienko, S. |
| title_short |
A construction of dual box |
| title_full |
A construction of dual box |
| title_fullStr |
A construction of dual box |
| title_full_unstemmed |
A construction of dual box |
| title_sort |
construction of dual box |
| author |
Ovsienko, S. |
| author_facet |
Ovsienko, S. |
| publishDate |
2006 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Let R be a quasi-hereditary algebra, F(∆) and
F(∇) its categories of good and cogood modules correspondingly.
In [6] these categories were characterized as the categories of representations of some boxes A = A∆ and A∇. These last are the box
theory counterparts of Ringel duality ([8]). We present an implicit
construction of the box B such that B − mo is equivalent to F(∇).
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/157387 |
| citation_txt |
A construction of dual box / S. Ovsienko // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 2. — С. 77–86. — Бібліогр.: 8 назв. — англ. |
| work_keys_str_mv |
AT ovsienkos aconstructionofdualbox AT ovsienkos constructionofdualbox |
| first_indexed |
2025-12-07T20:56:57Z |
| last_indexed |
2025-12-07T20:56:57Z |
| _version_ |
1850884507365801984 |