On minimal ω-composition non-H-formations

Let H be some class of groups. A formation F is called a minimal τ -closed ω-composition non-H-formation [1] if F * H but F1 ⊆ H for all proper τ -closed ω-composition subformations F₁ of F. In this paper we describe the minimal τ -closed ω-composition non-H-formations, where H is a 2-multiply lo...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2006
Автори: Belous, L.I., Selkin, V.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2006
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/157390
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On minimal ω-composition non-H-formations / L.I. Belous, V.M. Selkin // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 4. — С. 1–11. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-157390
record_format dspace
spelling Belous, L.I.
Selkin, V.M.
2019-06-20T03:12:08Z
2019-06-20T03:12:08Z
2006
On minimal ω-composition non-H-formations / L.I. Belous, V.M. Selkin // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 4. — С. 1–11. — Бібліогр.: 12 назв. — англ.
1726-3255
2000 Mathematics Subject Classification: 20D20.
https://nasplib.isofts.kiev.ua/handle/123456789/157390
Let H be some class of groups. A formation F is called a minimal τ -closed ω-composition non-H-formation [1] if F * H but F1 ⊆ H for all proper τ -closed ω-composition subformations F₁ of F. In this paper we describe the minimal τ -closed ω-composition non-H-formations, where H is a 2-multiply local formation and τ is a subgroup functor such that for any group G all subgroups from τ (G) are subnormal in G.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On minimal ω-composition non-H-formations
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On minimal ω-composition non-H-formations
spellingShingle On minimal ω-composition non-H-formations
Belous, L.I.
Selkin, V.M.
title_short On minimal ω-composition non-H-formations
title_full On minimal ω-composition non-H-formations
title_fullStr On minimal ω-composition non-H-formations
title_full_unstemmed On minimal ω-composition non-H-formations
title_sort on minimal ω-composition non-h-formations
author Belous, L.I.
Selkin, V.M.
author_facet Belous, L.I.
Selkin, V.M.
publishDate 2006
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Let H be some class of groups. A formation F is called a minimal τ -closed ω-composition non-H-formation [1] if F * H but F1 ⊆ H for all proper τ -closed ω-composition subformations F₁ of F. In this paper we describe the minimal τ -closed ω-composition non-H-formations, where H is a 2-multiply local formation and τ is a subgroup functor such that for any group G all subgroups from τ (G) are subnormal in G.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/157390
citation_txt On minimal ω-composition non-H-formations / L.I. Belous, V.M. Selkin // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 4. — С. 1–11. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT belousli onminimalωcompositionnonhformations
AT selkinvm onminimalωcompositionnonhformations
first_indexed 2025-12-07T18:23:29Z
last_indexed 2025-12-07T18:23:29Z
_version_ 1850874852461772800