On minimal ω-composition non-H-formations
Let H be some class of groups. A formation F is called a minimal τ -closed ω-composition non-H-formation [1] if F * H but F1 ⊆ H for all proper τ -closed ω-composition subformations F₁ of F. In this paper we describe the minimal τ -closed ω-composition non-H-formations, where H is a 2-multiply lo...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2006 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2006
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/157390 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On minimal ω-composition non-H-formations / L.I. Belous, V.M. Selkin // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 4. — С. 1–11. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-157390 |
|---|---|
| record_format |
dspace |
| spelling |
Belous, L.I. Selkin, V.M. 2019-06-20T03:12:08Z 2019-06-20T03:12:08Z 2006 On minimal ω-composition non-H-formations / L.I. Belous, V.M. Selkin // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 4. — С. 1–11. — Бібліогр.: 12 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 20D20. https://nasplib.isofts.kiev.ua/handle/123456789/157390 Let H be some class of groups. A formation F is called a minimal τ -closed ω-composition non-H-formation [1] if F * H but F1 ⊆ H for all proper τ -closed ω-composition subformations F₁ of F. In this paper we describe the minimal τ -closed ω-composition non-H-formations, where H is a 2-multiply local formation and τ is a subgroup functor such that for any group G all subgroups from τ (G) are subnormal in G. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics On minimal ω-composition non-H-formations Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On minimal ω-composition non-H-formations |
| spellingShingle |
On minimal ω-composition non-H-formations Belous, L.I. Selkin, V.M. |
| title_short |
On minimal ω-composition non-H-formations |
| title_full |
On minimal ω-composition non-H-formations |
| title_fullStr |
On minimal ω-composition non-H-formations |
| title_full_unstemmed |
On minimal ω-composition non-H-formations |
| title_sort |
on minimal ω-composition non-h-formations |
| author |
Belous, L.I. Selkin, V.M. |
| author_facet |
Belous, L.I. Selkin, V.M. |
| publishDate |
2006 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Let H be some class of groups. A formation F
is called a minimal τ -closed ω-composition non-H-formation [1] if
F * H but F1 ⊆ H for all proper τ -closed ω-composition subformations F₁ of F. In this paper we describe the minimal τ -closed
ω-composition non-H-formations, where H is a 2-multiply local formation and τ is a subgroup functor such that for any group G all
subgroups from τ (G) are subnormal in G.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/157390 |
| citation_txt |
On minimal ω-composition non-H-formations / L.I. Belous, V.M. Selkin // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 4. — С. 1–11. — Бібліогр.: 12 назв. — англ. |
| work_keys_str_mv |
AT belousli onminimalωcompositionnonhformations AT selkinvm onminimalωcompositionnonhformations |
| first_indexed |
2025-12-07T18:23:29Z |
| last_indexed |
2025-12-07T18:23:29Z |
| _version_ |
1850874852461772800 |