Nilpotent subsemigroups of a semigroup of order-decreasing transformations of a rooted tree

This paper deals with a semigroup of orderdecreasing transformations of a rooted tree. Such are the transformations α of some rooted tree G satisfying following condition: for any x from G α(x) belongs to a simple path from x to the root vertex of G. We describe all subsemigroups of the mentioned...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2006
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2006
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/157397
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Nilpotent subsemigroups of a semigroup of order-decreasing transformations of a rooted tree / A. Stronska // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 4. — С. 126–140. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-157397
record_format dspace
spelling 2019-06-20T03:13:09Z
2019-06-20T03:13:09Z
2006
Nilpotent subsemigroups of a semigroup of order-decreasing transformations of a rooted tree / A. Stronska // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 4. — С. 126–140. — Бібліогр.: 8 назв. — англ.
1726-3255
2000 Mathematics Subject Classification: 20M20.
https://nasplib.isofts.kiev.ua/handle/123456789/157397
This paper deals with a semigroup of orderdecreasing transformations of a rooted tree. Such are the transformations α of some rooted tree G satisfying following condition: for any x from G α(x) belongs to a simple path from x to the root vertex of G. We describe all subsemigroups of the mentioned semigroup, which are maximal among nilpotent subsemigroups of nilpotency class k in our semigroup. In the event when rooted tree is a ray we prove that all these maximal subsemigroups are pairwise nonisomorphic.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Nilpotent subsemigroups of a semigroup of order-decreasing transformations of a rooted tree
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Nilpotent subsemigroups of a semigroup of order-decreasing transformations of a rooted tree
spellingShingle Nilpotent subsemigroups of a semigroup of order-decreasing transformations of a rooted tree
title_short Nilpotent subsemigroups of a semigroup of order-decreasing transformations of a rooted tree
title_full Nilpotent subsemigroups of a semigroup of order-decreasing transformations of a rooted tree
title_fullStr Nilpotent subsemigroups of a semigroup of order-decreasing transformations of a rooted tree
title_full_unstemmed Nilpotent subsemigroups of a semigroup of order-decreasing transformations of a rooted tree
title_sort nilpotent subsemigroups of a semigroup of order-decreasing transformations of a rooted tree
publishDate 2006
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description This paper deals with a semigroup of orderdecreasing transformations of a rooted tree. Such are the transformations α of some rooted tree G satisfying following condition: for any x from G α(x) belongs to a simple path from x to the root vertex of G. We describe all subsemigroups of the mentioned semigroup, which are maximal among nilpotent subsemigroups of nilpotency class k in our semigroup. In the event when rooted tree is a ray we prove that all these maximal subsemigroups are pairwise nonisomorphic.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/157397
citation_txt Nilpotent subsemigroups of a semigroup of order-decreasing transformations of a rooted tree / A. Stronska // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 4. — С. 126–140. — Бібліогр.: 8 назв. — англ.
first_indexed 2025-12-07T19:26:42Z
last_indexed 2025-12-07T19:26:42Z
_version_ 1850878829934936064