On closed rational functions in several variables
Let K = K¯ be a field of characteristic zero. An element ϕ ∈ K(x1,... ,xn) is called a closed rational function if the subfield K(ϕ) is algebraically closed in the field K(x1,... ,xn). We prove that a rational function ϕ = f/g is closed if f and g are algebraically independent and at least one o...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2007 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2007
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/157399 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On closed rational functions in several variables / A.P. Petravchuk, O.G. Iena // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 115–124. — Бібліогр.: 10 назв. — англ. |