Research on ultrasonic vibration assisted repair technology of high temperature and high pressure parts
This paper studies the ultrasonic vibration assisted lifting laser cladding technology. Firstly, the simulation model of ultrasonic vibration-enhanced Ni60 self-fluxing alloy powder coated with 45 steel substrate is established, and the variation law of temperature field and temperature gradient in...
Saved in:
| Published in: | Functional Materials |
|---|---|
| Date: | 2018 |
| Main Authors: | , , , |
| Format: | Article |
| Language: | English |
| Published: |
НТК «Інститут монокристалів» НАН України
2018
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/157421 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Research on ultrasonic vibration assisted repair technology of high temperature and high pressure parts / Che Lei, Sun Wenlei, Zhang Guan, Han Jiaxin // Functional Materials. — 2018. — Т. 25, № 4. — С. 809-817. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-157421 |
|---|---|
| record_format |
dspace |
| spelling |
Che Lei Sun Wenlei Zhang Guan Han Jiaxin 2019-06-20T03:26:14Z 2019-06-20T03:26:14Z 2018 Research on ultrasonic vibration assisted repair technology of high temperature and high pressure parts / Che Lei, Sun Wenlei, Zhang Guan, Han Jiaxin // Functional Materials. — 2018. — Т. 25, № 4. — С. 809-817. — Бібліогр.: 10 назв. — англ. 1027-5495 DOI:https://doi.org/10.15407/fm25.04.809 https://nasplib.isofts.kiev.ua/handle/123456789/157421 This paper studies the ultrasonic vibration assisted lifting laser cladding technology. Firstly, the simulation model of ultrasonic vibration-enhanced Ni60 self-fluxing alloy powder coated with 45 steel substrate is established, and the variation law of temperature field and temperature gradient in ultrasonic vibration strengthening process are analyzed by using Ansys finite element analysis software. After that, the microstructure, microhardness and surface roughness of the cladding layer are compared with that of the cladding test blocks with and without ultrasonic vibration. The results show that as the ultrasonic frequency increases or the scanning speed decreases, the temperature increases everywhere along the Z-axis, and the temperature gradient from the cladding layer to the interface area decreases. Compared to the cladding layer without ultrasonic vibration, the microstructure of the cladding layer obtained by applying ultrasonic vibration is finer and denser due to the effect of ultrasonic cavitation, and the microhardness is increased by 1.37 times and the surface roughness is reduced by 36.6%. This work was financially supported by Xinjiang uygur autonomus region hightech research and development project and Xinjiang uygur autonomous region youth natural science fund project. en НТК «Інститут монокристалів» НАН України Functional Materials Technology Research on ultrasonic vibration assisted repair technology of high temperature and high pressure parts Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Research on ultrasonic vibration assisted repair technology of high temperature and high pressure parts |
| spellingShingle |
Research on ultrasonic vibration assisted repair technology of high temperature and high pressure parts Che Lei Sun Wenlei Zhang Guan Han Jiaxin Technology |
| title_short |
Research on ultrasonic vibration assisted repair technology of high temperature and high pressure parts |
| title_full |
Research on ultrasonic vibration assisted repair technology of high temperature and high pressure parts |
| title_fullStr |
Research on ultrasonic vibration assisted repair technology of high temperature and high pressure parts |
| title_full_unstemmed |
Research on ultrasonic vibration assisted repair technology of high temperature and high pressure parts |
| title_sort |
research on ultrasonic vibration assisted repair technology of high temperature and high pressure parts |
| author |
Che Lei Sun Wenlei Zhang Guan Han Jiaxin |
| author_facet |
Che Lei Sun Wenlei Zhang Guan Han Jiaxin |
| topic |
Technology |
| topic_facet |
Technology |
| publishDate |
2018 |
| language |
English |
| container_title |
Functional Materials |
| publisher |
НТК «Інститут монокристалів» НАН України |
| format |
Article |
| description |
This paper studies the ultrasonic vibration assisted lifting laser cladding technology. Firstly, the simulation model of ultrasonic vibration-enhanced Ni60 self-fluxing alloy powder coated with 45 steel substrate is established, and the variation law of temperature field and temperature gradient in ultrasonic vibration strengthening process are analyzed by using Ansys finite element analysis software. After that, the microstructure, microhardness and surface roughness of the cladding layer are compared with that of the cladding test blocks with and without ultrasonic vibration. The results show that as the ultrasonic frequency increases or the scanning speed decreases, the temperature increases everywhere along the Z-axis, and the temperature gradient from the cladding layer to the interface area decreases. Compared to the cladding layer without ultrasonic vibration, the microstructure of the cladding layer obtained by applying ultrasonic vibration is finer and denser due to the effect of ultrasonic cavitation, and the microhardness is increased by 1.37 times and the surface roughness is reduced by 36.6%.
|
| issn |
1027-5495 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/157421 |
| citation_txt |
Research on ultrasonic vibration assisted repair technology of high temperature and high pressure parts / Che Lei, Sun Wenlei, Zhang Guan, Han Jiaxin // Functional Materials. — 2018. — Т. 25, № 4. — С. 809-817. — Бібліогр.: 10 назв. — англ. |
| work_keys_str_mv |
AT chelei researchonultrasonicvibrationassistedrepairtechnologyofhightemperatureandhighpressureparts AT sunwenlei researchonultrasonicvibrationassistedrepairtechnologyofhightemperatureandhighpressureparts AT zhangguan researchonultrasonicvibrationassistedrepairtechnologyofhightemperatureandhighpressureparts AT hanjiaxin researchonultrasonicvibrationassistedrepairtechnologyofhightemperatureandhighpressureparts |
| first_indexed |
2025-12-07T19:38:26Z |
| last_indexed |
2025-12-07T19:38:26Z |
| _version_ |
1850879568090497024 |