Excited state properties of polycyclic hydrocarbons based dyes

In this paper we present a comprehensive ab initio study of polycyclic hydrocarbons based dyes. The purpose of the work is to obtain electronic properties of the materials which are supposed to be used in organic electronic devices. The list of materials includes violanthrone (di-benzanthrone) der...

Full description

Saved in:
Bibliographic Details
Date:2019
Main Authors: Klysko, Yu.V., Syrotyuk, S.V.
Format: Article
Language:English
Published: Інститут фізики конденсованих систем НАН України 2019
Series:Condensed Matter Physics
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/157480
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Excited state properties of polycyclic hydrocarbons based dyes / Yu.V. Klysko, S.V. Syrotyuk // Condensed Matter Physics. — 2019. — Т. 22, № 1. — С. 14701: 1–5. — Бібліогр.: 27 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-157480
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1574802025-02-09T20:13:42Z Excited state properties of polycyclic hydrocarbons based dyes Екситоннi властивостi пiгментiв на основi полiциклiчних ароматичних вуглеводнiв Klysko, Yu.V. Syrotyuk, S.V. In this paper we present a comprehensive ab initio study of polycyclic hydrocarbons based dyes. The purpose of the work is to obtain electronic properties of the materials which are supposed to be used in organic electronic devices. The list of materials includes violanthrone (di-benzanthrone) derivatives which are already known as industrial organic dyes. First, we have obtained ground-state properties by performing ab initio eigenvalue calculation within generalized gradient approximation (GGA). Then, Green’s function method has been used in order to obtain excited state properties. The exciton eigenvalues, as well as imaginary part of dielectric function (DF) and density of states (DOS), have been evaluated from the Bethe-Salpeter equation (BS). The electronic properties obtained here are in good agreement with available experimental data. В данiй роботi представлено вивчення пiгментiв на основi полiциклiчних ароматичних вуглеводнiв з використанням ab initio методiв. Список дослiджених матерiалiв включає промисловi зеленi пiгменти, похiднi бензантрону, якi є перспективними для використання в органiчнiй електронiцi. На першому етапi власнi функцiї та власнi значення були отриманi з використанням узагальненого градiєнтного наближення (GGA). На другому етапi квазiчастинковi електроннi властивостi розрахованi в рамках наближення GW. Енергiї екситонiв, уявна частина дiелектричної функцiї та густина станiв були одержанi з рiвняння БетеСолпiтера (BS). Отриманi електроннi властивостi добре зiставляються з наявними екпериментальними даними. 2019 Article Excited state properties of polycyclic hydrocarbons based dyes / Yu.V. Klysko, S.V. Syrotyuk // Condensed Matter Physics. — 2019. — Т. 22, № 1. — С. 14701: 1–5. — Бібліогр.: 27 назв. — англ. 1607-324X PACS: 71.20.Rv, 71.35.-y, 71.10.-w DOI:10.5488/CMP.22.14701 arXiv:1903.11509 https://nasplib.isofts.kiev.ua/handle/123456789/157480 en Condensed Matter Physics application/pdf Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we present a comprehensive ab initio study of polycyclic hydrocarbons based dyes. The purpose of the work is to obtain electronic properties of the materials which are supposed to be used in organic electronic devices. The list of materials includes violanthrone (di-benzanthrone) derivatives which are already known as industrial organic dyes. First, we have obtained ground-state properties by performing ab initio eigenvalue calculation within generalized gradient approximation (GGA). Then, Green’s function method has been used in order to obtain excited state properties. The exciton eigenvalues, as well as imaginary part of dielectric function (DF) and density of states (DOS), have been evaluated from the Bethe-Salpeter equation (BS). The electronic properties obtained here are in good agreement with available experimental data.
format Article
author Klysko, Yu.V.
Syrotyuk, S.V.
spellingShingle Klysko, Yu.V.
Syrotyuk, S.V.
Excited state properties of polycyclic hydrocarbons based dyes
Condensed Matter Physics
author_facet Klysko, Yu.V.
Syrotyuk, S.V.
author_sort Klysko, Yu.V.
title Excited state properties of polycyclic hydrocarbons based dyes
title_short Excited state properties of polycyclic hydrocarbons based dyes
title_full Excited state properties of polycyclic hydrocarbons based dyes
title_fullStr Excited state properties of polycyclic hydrocarbons based dyes
title_full_unstemmed Excited state properties of polycyclic hydrocarbons based dyes
title_sort excited state properties of polycyclic hydrocarbons based dyes
publisher Інститут фізики конденсованих систем НАН України
publishDate 2019
url https://nasplib.isofts.kiev.ua/handle/123456789/157480
citation_txt Excited state properties of polycyclic hydrocarbons based dyes / Yu.V. Klysko, S.V. Syrotyuk // Condensed Matter Physics. — 2019. — Т. 22, № 1. — С. 14701: 1–5. — Бібліогр.: 27 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT klyskoyuv excitedstatepropertiesofpolycyclichydrocarbonsbaseddyes
AT syrotyuksv excitedstatepropertiesofpolycyclichydrocarbonsbaseddyes
AT klyskoyuv eksitonnivlastivostipigmentivnaosnovipolicikličniharomatičnihvuglevodniv
AT syrotyuksv eksitonnivlastivostipigmentivnaosnovipolicikličniharomatičnihvuglevodniv
first_indexed 2025-11-30T09:37:31Z
last_indexed 2025-11-30T09:37:31Z
_version_ 1850207583023923200
fulltext Condensed Matter Physics, 2019, Vol. 22, No 1, 14701: 1–5 DOI: 10.5488/CMP.22.14701 http://www.icmp.lviv.ua/journal Rapid Communication Excited state properties of polycyclic hydrocarbons based dyes Yu.V. Klysko, S.V. Syrotyuk Semiconductor Electronics Department, Lviv Polytechnic National University, S. Bandera St., 12, 79013 Lviv, Ukraine Received February 27, 2019, in final form March 5, 2019 In this paper we present a comprehensive ab initio study of polycyclic hydrocarbons based dyes. The purpose of the work is to obtain electronic properties of the materials which are supposed to be used in organic electronic devices. The list of materials includes violanthrone (di-benzanthrone) derivatives which are already known as industrial organic dyes. First, we have obtained ground-state properties by performing ab initio eigenvalue cal- culation within generalized gradient approximation (GGA). Then, Green’s function method has been used in order to obtain excited state properties. The exciton eigenvalues, as well as imaginary part of dielectric func- tion (DF) and density of states (DOS), have been evaluated from the Bethe-Salpeter equation (BS). The electronic properties obtained here are in good agreement with available experimental data. Key words: ab initio, organic semiconductors, electronic structure PACS: 71.20.Rv, 71.35.-y, 71.10.-w 1. Introduction Recently, the interest to polyaromatic hydrocarbons has been growing due the rise of organic elec- tronics and organic photovoltaics espesially, because it is supposed that planar molecules could replace fullerenes [1–6]. At present, perylene diimide (PDI) derivatives are the most popular materials due to their remarkable electronic properties, stability and processability [7–12]. The rapid development of chemistry and investigations of these molecules has resulted in a high number of possible derivatives and growth of efficiency of the non-fullerene organic photovoltaics (OPV). Violanthrone has a structure similar to the structure of PDI. The history of violanthrone began in 1950, when its excellent, and similar to inorganic solids, electronic properties were investigated [13, 14]. It consists of 9 benzene rings, so it has a larger π-conjugated system. Besides the use of violanthrones in OPV devices, it is also quite promising for organic thin film transistors [15, 16] and light emitting devices, due to the emission in the red and infrared part (IR) of the spectrum [17, 18]. We are going to use quasiparticle ab initio methods in order to study the excited state properties of materials, which are already known as organic dyes (figure 1): violanthrone (C.I. Vat Blue 20, VB 20) with its derivatives (C.I. Vat Green 1, VG 1; C.I. Vat Green 2, VG 2; C.I. Vat Green 9, VG 9) and the anthraquinone based dye C.I. Vat Green 3 (VG 3). The present work is aimed at evaluating the electronic properties for these materials and checking the suitability of ab initio methods applied here, with respect to a correct description of properties of such materials, which is established by comparison with experimental data. 2. Methods Firstly, we have performed the structure optimization for all the materials studied here. Secondly, the ground state electron eigenvalues En and eigenfunctions φn have been obtained from the next equation, This work is licensed under a Creative Commons Attribution 4.0 International License . Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. 14701-1 https://doi.org/10.5488/CMP.22.14701 http://www.icmp.lviv.ua/journal http://creativecommons.org/licenses/by/4.0/ Yu.V. Klysko, S.V. Syrotyuk VB 20 VG 2 VG 9 VG 3 VG 1 NO2 CH3H3C CH3H3C O O O O O O O O O O BrBr H N O O O O O Figure 1. Chemical structure of the investigated dyes. using the generalized gradient approximation (GGA) of the exchange-correlation potentialVxc in the form proposed by Perdew, Burke and Ernzerhof [19]: [∇2 + Vext(r) + VH(r) + Vxc(r)]φn(r) = En(r)φn(r), (2.1) where ∇2 is the kinetic energy operator, Vext(r) is the Coulomb potential of the nuclei and core electrons, and exchange-correlation potential of core electrons, VH(r) is the Hartree potential, Vxc(r) stands for the exchange-correlation potential, and n denotes a band index. Thirdly, quasiparticle eigenvalues and eigenfunctions were searched from the following equation: [∇2 + Vext(r) + VH(r)]φn(r) + ∫ Σ(r, r′, En)φn(r′)dr′ = En(r)φn(r), (2.2) where Σ(r, r′, En) is the non-local self-energy operator which stands for a renormalized electron states in the many-body system [20]. Equation (2.2) has been solved within the self-consistent (sc-GW) procedure and with a spherical truncation of the Coulomb term in reciprocal space [21]. In the Bethe-Salpeter (BS) formalism, the electron-hole two-body basis can be expressed in the next form L = (H − w)−1F, (2.3) H = ( R C −C∗ −R∗ ) , F = ( 1 0 0 −1 ) , 14701-2 Excited state properties of polycyclic hydrocarbons based dyes where L is two-particle Green’s function, whose the polarizability can be evaluated with [20]. The matrix blocks R (R∗) represent the resonant coupling between electron-hole excitations (recombination), and C (C∗) describe the non-resonant coupling between excitations (recombination). Equation (2.3) has been solved by the direct diagonalization procedure. All calculations have been performed using ABINIT package [22]. ABINIT uses a plane wave basis set to compute the electronic density and derived properties. Thus, we determined optimal plane-wave cut-off energies having performed a convergence study that shows the following optimal values: 871 eV (32 Ha) for ground-state runs, 82 eV (3.0 Ha) for the dielectric matrix in random phase approximation (for sc-GW) as well as in BS formalism, 1090 eV (40 Ha) for the exchange part of the self-energy operator. Prior to performing the analysis, we optimized the molecular structures by simple relaxation of ionic positions according to (converged) forces obtained based on the GGA approach. The vacuum spacing is set to be 4 A in each positive or negative direction for all molecules. 3. Results and discussion Electronic properties including the electron energy gap Eg calculated within three different ap- proaches, HOMO-level energy EHOMO, are presented in table 1. The values of EGGA g , obtained within the GGA approach, vary from 0.97 eV for VG 3 up to 1.25 eV for VB 20. The sc-GW results differ both in absolute values as well as in relative values. Here, VG 3 has the widest EGW g , found at the GW level, which is above 6 times greater than EGGA g and equals 6.07 eV. In case of BS approach, the calculated gap values EBS g , derived at the BS level, are lower than EGGA g (table 1). Similar to the GGA approach, VG 3 has a smaller energy gap EBS g (0.95 eV) and VB 20 has the widest gap (0.29 eV). The obtained real and imaginary part of the BS dielectric function (DF) and interband density of states (DOS) for the list of materials are presented in figure 2. Having non-zero DOS around 1 eV, PB 20 is the only molecule from the list which has no DF maximum in IR region. The calculated EBS g (table 1) agrees with the experimental one which equals 0.84 eV (figure 2). The location of the first absorption peak coincides with DF maxima (figure 2). The lowest BS gap EBS g is obtained in VG3. Here, we can see a DOS maximum, located around 0.3 eV, with a strong DF response (figure 2). Then, in the range from 0.5 to 0.8 eV, we observe DOS gap. 4. Conclusions In this paper, we have presented the electronic structure and dielectric function ε2 of five polycyclic hydrocarbons based dyes. The ground state properties were calculated within the GGA approximation to the exchange-correlation potential. Excited electronic states were evaluated in order to compare them with the optical absorption spectrum. The primary purpose was to calculate the GW self-energy in order to obtain accurate quasiparticle energies that include the static electron-hole interaction. The secondary purpose was to obtain the BS solutions, including the dynamical electron-hole interaction. The dielectric function obtained by means of the Bethe-Salpeter equation contains information on the energy of exciton Table 1. The parameters of electronic structure: the band gap Eg and the highest occupied molecular orbital energy EHOMO. Molecule E GGA g , eV EGW g , eV EBS g , eV EHOMO, eV VB 20 1.25 5.37 0.95 −4.81 VG 1 1.09 5.03 0.51 −5.30 VG 2 1.10 4.91 0.60 −5.10 VG 3 0.97 6.07 0.29 −5.94 VG 9 1.20 5.43 0.74 −6.02 14701-3 Yu.V. Klysko, S.V. Syrotyuk VG 1 ε 2 (a .u ) 0.01 0.1 1 ID O S (s t./ eV ) 1 10 100 1,000 E (ev) 0 1 2 3 4 5 VG 2 ε 2 (a .u ) 0.01 0.1 1 ID O S (s t./ eV ) 1 10 100 1,000 E (ev) 0 1 2 3 4 5 VG3 ε 2 (a .u ) 0.01 0.1 1 ID O S (s t./ eV ) 1 10 100 1,000 E (ev) 0 1 2 3 4 5 VG 9 ε 2 (a .u ) 0.01 0.1 1 ID O S (s t./ eV ) 1 10 100 1,000 E (ev) 0 1 2 3 4 5 VB 20 ε 2 (a .u ) 0.01 0.1 1 ID O S (s t./ eV ) 1 10 100 1,000 E (ev) 0 1 2 3 4 5 Figure 2. (Colour online) Imaginary part of the DF ε2 (black line) and DOS (red line) obtained for molecules. Experimental absorption peaks are indicated by blue lines [23–25]. Black solid line for VB 20 corresponds to the experimental value of Eg [14]. The experimental data correspond to solid-state materials. excitations that may be compared to measured optical absorption. The results obtained here may be considered as the basis for assessing the validity of the GGA, GW and BS approaches, and for obtaining theoretical absorption spectrum that would be well compared to the measured one. We found, that only the BS approach provides a good comparison with the data of optical spectroscopic measurements. The results for quasiparticle energies, obtained here for finite systems, show a significant difference compared to those found for crystals [26, 27]. If for a crystal, parameter Eg, found in the approach of GW, is close to the experimental value, then for molecules, only the energies of quasiparticle excitations, obtained from BS equation, are well compared with the experimental data. References 1. Müller M., Kübel C., Müllen K., Chem. Eur. J., 1998, 4, No. 11, 2099–2109, doi:10.1002/(SICI)1521-3765(19981102)4:11<2099::AID-CHEM2099>3.0.CO;2-T. 2. Dötz F., Brand J.D., Ito S., Gherghel L., Müllen K., J. Am. Chem. Soc., 2000, 122, No. 32, 7707–7717, doi:10.1021/ja000832x. 3. Feng X., Pisula W., Müllen K., Pure Appl. Chem., 2009, 81, No. 12, 2203–2224, doi:10.1351/PAC-CON-09-07-07. 14701-4 https://doi.org/10.1002/(SICI)1521-3765(19981102)4:11%3C2099::AID-CHEM2099%3E3.0.CO;2-T https://doi.org/10.1021/ja000832x https://doi.org/10.1351/PAC-CON-09-07-07 Excited state properties of polycyclic hydrocarbons based dyes 4. Samorí P., Severin N., Simpson C.D., Müllen K., Rabe J.P., J. Am. Chem. Soc., 2002, 124, No. 32, 9454–9457, doi:10.1021/ja020323q. 5. Fetzer J.C., Polycyclic Aromat. Compd., 2007, 27, No. 2, 143–162, doi:10.1080/10406630701268255. 6. Chen L., Li C., Müllen K., J. Mater. Chem. C, 2014, 2, 1938–1956, doi:10.1039/C3TC32315C. 7. Zhan X., Facchetti A., Barlow S., Marks T.J., Ratner M.A., Wasielewski M.R., Marder S.R., Adv. Mater., 2011, 23, No. 2, 268–284, doi:10.1002/adma.201001402. 8. Li C., Wonneberger H., Adv. Mater., 2012, 24, No. 5, 613–636, doi:10.1002/adma.201104447. 9. Liang N., Jiang W., Hou J., Wang Z., Mater. Chem. Front., 2017, 1, 1291–1303, doi:10.1039/C6QM00247A. 10. Lin Y., Li Y., Zhan X., Chem. Soc. Rev., 2012, 41, 4245–4272, doi:10.1039/C2CS15313K. 11. Lin Y., Zhan X., Mater. Horiz., 2014, 1, 470–488, doi:10.1039/C4MH00042K. 12. Yan C., Barlow S., Wang Z., Yan H., Jen A.K.-Y., Marder S.R., Zhan X., Nat. Rev. Mater., 2018, 3, 18003, doi:10.1038/natrevmats.2018.3. 13. Akamatu H., Inokuchi H., J. Chem. Phys., 1950, 18, No. 6, 810–811, doi:10.1063/1.1747780. 14. Akamatu H., Inokuchi H., J. Chem. Phys., 1952, 20, No. 9, 1481–1483, doi:10.1063/1.1700784. 15. Shi M., Hao F., Zuo L., Chen Y., Nan Y., Chen H., Dyes Pigm., 2012, 95, No. 2, 377–383, doi:10.1016/j.dyepig.2012.05.003. 16. Shi M.M., Chen Y., Nan Y.X., Ling J., Zuo L.J., Qiu W.M., Wang M., Chen H.Z., J. Phys. Chem. B, 2011, 115, No. 4, 618–623, doi:10.1021/jp109683h. 17. Fückel B., Roberts D.A., Cheng Y.Y., Clady R.G.C.R., Piper R.B., Ekins-Daukes N.J., Crossley M.J., Schmidt T.W., J. Phys. Chem. Lett., 2011, 2, No. 9, 966–971, doi:10.1021/jz200270w. 18. Xiao P., Zhang J., Dumur F., Tehfe M.A., Morlet-Savary F., Graff B., Gigmes D., Fouassier J.P., Lalevée J., Prog. Polym. Sci., 2015, 41, 32–66, doi:10.1016/j.progpolymsci.2014.09.001. 19. Perdew J.P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77, 3865–3868, doi:10.1103/PhysRevLett.77.3865. 20. Onida G., Reining L., Rubio A., Rev. Mod. Phys., 2002, 74, No. 2, 601–659, doi:10.1103/revmodphys.74.601. 21. Ismail-Beigi S., Phys. Rev. B, 2006, 73, 233103, doi:10.1103/PhysRevB.73.233103. 22. Gonze X., Jollet F., Abreu Araujo F., Adams D., Amadon B., Applencourt T., Audouze C., Beuken J.-M., Bieder J., Bokhanchuk A., et al., Comput. Phys. Commun., 2016, 205, 106–131, doi:10.1016/j.cpc.2016.04.003. 23. Rauhut M.M., Roberts B.G., Maulding D.R., Bergmark W., Coleman R., J. Org. Chem., 1975, 40, No. 3, 330–335, doi:10.1021/jo00891a014. 24. Gruen H., Görner H., Photochem. Photobiol. Sci., 2009, 8, 1164–1171, doi:10.1039/B907913K. 25. Liu B., Fan D., Zhang Q., Chen Y., Zhu W., Front. Chem. China, 2010, 5, No. 2, 200–207, doi:10.1007/s11458-010-0115-7. 26. Syrotyuk S., Shved V., Klysko Y.V., Acta Phys. Pol. A, 2018, 133, No. 4, 990–993, doi:10.12693/APhysPolA.133.990. 27. Syrotyuk S., Shved V., Klysko Y.V., J. Nano- Electron. Phys., 2018, 10, No. 3, 03033, doi:10.21272/jnep.10(3).03033. Екситоннi властивостi пiгментiв на основi полiциклiчних ароматичних вуглеводнiв Ю.В. Клиско, С.В. Сиротюк Кафедра напiвпровiдникової електронiки, Нацiональний унiверситет “Львiвська полiтехнiка”, вул. С. Бандери, 12, 79013 Львiв, Україна В данiй роботi представлено вивчення пiгментiв на основi полiциклiчних ароматичних вуглеводнiв з використанням ab initio методiв. Список дослiджених матерiалiв включає промисловi зеленi пiгменти, похiднi бензантрону, якi є перспективними для використання в органiчнiй електронiцi. На першому етапi власнi функцiї та власнi значення були отриманi з використанням узагальненого градiєнтного наближен- ня (GGA). На другому етапi квазiчастинковi електроннi властивостi розрахованi в рамках наближення GW. Енергiї екситонiв, уявна частина дiелектричної функцiї та густина станiв були одержанi з рiвняння Бете- Солпiтера (BS). Отриманi електроннi властивостi добре зiставляються з наявними екпериментальними даними. Ключовi слова: органiчнi напiвпровiдники, ab initio, електронна структура 14701-5 https://doi.org/10.1021/ja020323q https://doi.org/10.1080/10406630701268255 https://doi.org/10.1039/C3TC32315C https://doi.org/10.1002/adma.201001402 https://doi.org/10.1002/adma.201104447 https://doi.org/10.1039/C6QM00247A https://doi.org/10.1039/C2CS15313K https://doi.org/10.1039/C4MH00042K https://doi.org/10.1038/natrevmats.2018.3 https://doi.org/10.1063/1.1747780 https://doi.org/10.1063/1.1700784 https://doi.org/10.1016/j.dyepig.2012.05.003 https://doi.org/10.1021/jp109683h https://doi.org/10.1021/jz200270w https://doi.org/10.1016/j.progpolymsci.2014.09.001 https://doi.org/10.1103/PhysRevLett.77.3865 https://doi.org/10.1103/revmodphys.74.601 https://doi.org/10.1103/PhysRevB.73.233103 https://doi.org/10.1016/j.cpc.2016.04.003 https://doi.org/10.1021/jo00891a014 https://doi.org/10.1039/B907913K https://doi.org/10.1007/s11458-010-0115-7 https://doi.org/10.12693/APhysPolA.133.990 https://doi.org/10.21272/jnep.10(3).03033 Introduction Methods Results and discussion Conclusions