Excited state properties of polycyclic hydrocarbons based dyes
In this paper we present a comprehensive ab initio study of polycyclic hydrocarbons based dyes. The purpose of the work is to obtain electronic properties of the materials which are supposed to be used in organic electronic devices. The list of materials includes violanthrone (di-benzanthrone) der...
Saved in:
| Date: | 2019 |
|---|---|
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут фізики конденсованих систем НАН України
2019
|
| Series: | Condensed Matter Physics |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/157480 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Excited state properties of polycyclic hydrocarbons based dyes / Yu.V. Klysko, S.V. Syrotyuk // Condensed Matter Physics. — 2019. — Т. 22, № 1. — С. 14701: 1–5. — Бібліогр.: 27 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-157480 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1574802025-02-09T20:13:42Z Excited state properties of polycyclic hydrocarbons based dyes Екситоннi властивостi пiгментiв на основi полiциклiчних ароматичних вуглеводнiв Klysko, Yu.V. Syrotyuk, S.V. In this paper we present a comprehensive ab initio study of polycyclic hydrocarbons based dyes. The purpose of the work is to obtain electronic properties of the materials which are supposed to be used in organic electronic devices. The list of materials includes violanthrone (di-benzanthrone) derivatives which are already known as industrial organic dyes. First, we have obtained ground-state properties by performing ab initio eigenvalue calculation within generalized gradient approximation (GGA). Then, Green’s function method has been used in order to obtain excited state properties. The exciton eigenvalues, as well as imaginary part of dielectric function (DF) and density of states (DOS), have been evaluated from the Bethe-Salpeter equation (BS). The electronic properties obtained here are in good agreement with available experimental data. В данiй роботi представлено вивчення пiгментiв на основi полiциклiчних ароматичних вуглеводнiв з використанням ab initio методiв. Список дослiджених матерiалiв включає промисловi зеленi пiгменти, похiднi бензантрону, якi є перспективними для використання в органiчнiй електронiцi. На першому етапi власнi функцiї та власнi значення були отриманi з використанням узагальненого градiєнтного наближення (GGA). На другому етапi квазiчастинковi електроннi властивостi розрахованi в рамках наближення GW. Енергiї екситонiв, уявна частина дiелектричної функцiї та густина станiв були одержанi з рiвняння БетеСолпiтера (BS). Отриманi електроннi властивостi добре зiставляються з наявними екпериментальними даними. 2019 Article Excited state properties of polycyclic hydrocarbons based dyes / Yu.V. Klysko, S.V. Syrotyuk // Condensed Matter Physics. — 2019. — Т. 22, № 1. — С. 14701: 1–5. — Бібліогр.: 27 назв. — англ. 1607-324X PACS: 71.20.Rv, 71.35.-y, 71.10.-w DOI:10.5488/CMP.22.14701 arXiv:1903.11509 https://nasplib.isofts.kiev.ua/handle/123456789/157480 en Condensed Matter Physics application/pdf Інститут фізики конденсованих систем НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| description |
In this paper we present a comprehensive ab initio study of polycyclic hydrocarbons based dyes. The purpose of
the work is to obtain electronic properties of the materials which are supposed to be used in organic electronic
devices. The list of materials includes violanthrone (di-benzanthrone) derivatives which are already known as
industrial organic dyes. First, we have obtained ground-state properties by performing ab initio eigenvalue calculation within generalized gradient approximation (GGA). Then, Green’s function method has been used in
order to obtain excited state properties. The exciton eigenvalues, as well as imaginary part of dielectric function (DF) and density of states (DOS), have been evaluated from the Bethe-Salpeter equation (BS). The electronic
properties obtained here are in good agreement with available experimental data. |
| format |
Article |
| author |
Klysko, Yu.V. Syrotyuk, S.V. |
| spellingShingle |
Klysko, Yu.V. Syrotyuk, S.V. Excited state properties of polycyclic hydrocarbons based dyes Condensed Matter Physics |
| author_facet |
Klysko, Yu.V. Syrotyuk, S.V. |
| author_sort |
Klysko, Yu.V. |
| title |
Excited state properties of polycyclic hydrocarbons based dyes |
| title_short |
Excited state properties of polycyclic hydrocarbons based dyes |
| title_full |
Excited state properties of polycyclic hydrocarbons based dyes |
| title_fullStr |
Excited state properties of polycyclic hydrocarbons based dyes |
| title_full_unstemmed |
Excited state properties of polycyclic hydrocarbons based dyes |
| title_sort |
excited state properties of polycyclic hydrocarbons based dyes |
| publisher |
Інститут фізики конденсованих систем НАН України |
| publishDate |
2019 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/157480 |
| citation_txt |
Excited state properties of polycyclic hydrocarbons based dyes / Yu.V. Klysko, S.V. Syrotyuk // Condensed Matter Physics. — 2019. — Т. 22, № 1. — С. 14701: 1–5. — Бібліогр.: 27 назв. — англ. |
| series |
Condensed Matter Physics |
| work_keys_str_mv |
AT klyskoyuv excitedstatepropertiesofpolycyclichydrocarbonsbaseddyes AT syrotyuksv excitedstatepropertiesofpolycyclichydrocarbonsbaseddyes AT klyskoyuv eksitonnivlastivostipigmentivnaosnovipolicikličniharomatičnihvuglevodniv AT syrotyuksv eksitonnivlastivostipigmentivnaosnovipolicikličniharomatičnihvuglevodniv |
| first_indexed |
2025-11-30T09:37:31Z |
| last_indexed |
2025-11-30T09:37:31Z |
| _version_ |
1850207583023923200 |
| fulltext |
Condensed Matter Physics, 2019, Vol. 22, No 1, 14701: 1–5
DOI: 10.5488/CMP.22.14701
http://www.icmp.lviv.ua/journal
Rapid Communication
Excited state properties of polycyclic hydrocarbons
based dyes
Yu.V. Klysko, S.V. Syrotyuk
Semiconductor Electronics Department, Lviv Polytechnic National University,
S. Bandera St., 12, 79013 Lviv, Ukraine
Received February 27, 2019, in final form March 5, 2019
In this paper we present a comprehensive ab initio study of polycyclic hydrocarbons based dyes. The purpose of
the work is to obtain electronic properties of the materials which are supposed to be used in organic electronic
devices. The list of materials includes violanthrone (di-benzanthrone) derivatives which are already known as
industrial organic dyes. First, we have obtained ground-state properties by performing ab initio eigenvalue cal-
culation within generalized gradient approximation (GGA). Then, Green’s function method has been used in
order to obtain excited state properties. The exciton eigenvalues, as well as imaginary part of dielectric func-
tion (DF) and density of states (DOS), have been evaluated from the Bethe-Salpeter equation (BS). The electronic
properties obtained here are in good agreement with available experimental data.
Key words: ab initio, organic semiconductors, electronic structure
PACS: 71.20.Rv, 71.35.-y, 71.10.-w
1. Introduction
Recently, the interest to polyaromatic hydrocarbons has been growing due the rise of organic elec-
tronics and organic photovoltaics espesially, because it is supposed that planar molecules could replace
fullerenes [1–6]. At present, perylene diimide (PDI) derivatives are the most popular materials due to
their remarkable electronic properties, stability and processability [7–12]. The rapid development of
chemistry and investigations of these molecules has resulted in a high number of possible derivatives
and growth of efficiency of the non-fullerene organic photovoltaics (OPV). Violanthrone has a structure
similar to the structure of PDI. The history of violanthrone began in 1950, when its excellent, and similar
to inorganic solids, electronic properties were investigated [13, 14]. It consists of 9 benzene rings, so
it has a larger π-conjugated system. Besides the use of violanthrones in OPV devices, it is also quite
promising for organic thin film transistors [15, 16] and light emitting devices, due to the emission in the
red and infrared part (IR) of the spectrum [17, 18].
We are going to use quasiparticle ab initio methods in order to study the excited state properties
of materials, which are already known as organic dyes (figure 1): violanthrone (C.I. Vat Blue 20, VB
20) with its derivatives (C.I. Vat Green 1, VG 1; C.I. Vat Green 2, VG 2; C.I. Vat Green 9, VG 9)
and the anthraquinone based dye C.I. Vat Green 3 (VG 3). The present work is aimed at evaluating the
electronic properties for these materials and checking the suitability of ab initio methods applied here,
with respect to a correct description of properties of such materials, which is established by comparison
with experimental data.
2. Methods
Firstly, we have performed the structure optimization for all the materials studied here. Secondly, the
ground state electron eigenvalues En and eigenfunctions φn have been obtained from the next equation,
This work is licensed under a Creative Commons Attribution 4.0 International License . Further distribution
of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
14701-1
https://doi.org/10.5488/CMP.22.14701
http://www.icmp.lviv.ua/journal
http://creativecommons.org/licenses/by/4.0/
Yu.V. Klysko, S.V. Syrotyuk
VB 20
VG 2
VG 9
VG 3
VG 1
NO2
CH3H3C
CH3H3C
O O
O O
O O
O O
O O BrBr
H
N
O
O O
O O
Figure 1. Chemical structure of the investigated dyes.
using the generalized gradient approximation (GGA) of the exchange-correlation potentialVxc in the form
proposed by Perdew, Burke and Ernzerhof [19]:
[∇2 + Vext(r) + VH(r) + Vxc(r)]φn(r) = En(r)φn(r), (2.1)
where ∇2 is the kinetic energy operator, Vext(r) is the Coulomb potential of the nuclei and core electrons,
and exchange-correlation potential of core electrons, VH(r) is the Hartree potential, Vxc(r) stands for
the exchange-correlation potential, and n denotes a band index. Thirdly, quasiparticle eigenvalues and
eigenfunctions were searched from the following equation:
[∇2 + Vext(r) + VH(r)]φn(r) +
∫
Σ(r, r′, En)φn(r′)dr′ = En(r)φn(r), (2.2)
where Σ(r, r′, En) is the non-local self-energy operator which stands for a renormalized electron states in
the many-body system [20]. Equation (2.2) has been solved within the self-consistent (sc-GW) procedure
and with a spherical truncation of the Coulomb term in reciprocal space [21].
In the Bethe-Salpeter (BS) formalism, the electron-hole two-body basis can be expressed in the next
form
L = (H − w)−1F, (2.3)
H =
(
R C
−C∗ −R∗
)
,
F =
(
1 0
0 −1
)
,
14701-2
Excited state properties of polycyclic hydrocarbons based dyes
where L is two-particle Green’s function, whose the polarizability can be evaluated with [20]. The matrix
blocks R (R∗) represent the resonant coupling between electron-hole excitations (recombination), and C
(C∗) describe the non-resonant coupling between excitations (recombination). Equation (2.3) has been
solved by the direct diagonalization procedure.
All calculations have been performed using ABINIT package [22]. ABINIT uses a plane wave basis
set to compute the electronic density and derived properties. Thus, we determined optimal plane-wave
cut-off energies having performed a convergence study that shows the following optimal values: 871 eV
(32 Ha) for ground-state runs, 82 eV (3.0 Ha) for the dielectric matrix in random phase approximation (for
sc-GW) as well as in BS formalism, 1090 eV (40 Ha) for the exchange part of the self-energy operator.
Prior to performing the analysis, we optimized the molecular structures by simple relaxation of ionic
positions according to (converged) forces obtained based on the GGA approach. The vacuum spacing is
set to be 4 A in each positive or negative direction for all molecules.
3. Results and discussion
Electronic properties including the electron energy gap Eg calculated within three different ap-
proaches, HOMO-level energy EHOMO, are presented in table 1.
The values of EGGA
g , obtained within the GGA approach, vary from 0.97 eV for VG 3 up to 1.25 eV
for VB 20. The sc-GW results differ both in absolute values as well as in relative values. Here, VG 3 has
the widest EGW
g , found at the GW level, which is above 6 times greater than EGGA
g and equals 6.07 eV.
In case of BS approach, the calculated gap values EBS
g , derived at the BS level, are lower than EGGA
g
(table 1). Similar to the GGA approach, VG 3 has a smaller energy gap EBS
g (0.95 eV) and VB 20 has
the widest gap (0.29 eV). The obtained real and imaginary part of the BS dielectric function (DF) and
interband density of states (DOS) for the list of materials are presented in figure 2.
Having non-zero DOS around 1 eV, PB 20 is the only molecule from the list which has no DF
maximum in IR region. The calculated EBS
g (table 1) agrees with the experimental one which equals
0.84 eV (figure 2). The location of the first absorption peak coincides with DF maxima (figure 2). The
lowest BS gap EBS
g is obtained in VG3. Here, we can see a DOS maximum, located around 0.3 eV, with
a strong DF response (figure 2). Then, in the range from 0.5 to 0.8 eV, we observe DOS gap.
4. Conclusions
In this paper, we have presented the electronic structure and dielectric function ε2 of five polycyclic
hydrocarbons based dyes. The ground state properties were calculated within the GGA approximation
to the exchange-correlation potential. Excited electronic states were evaluated in order to compare them
with the optical absorption spectrum. The primary purpose was to calculate the GW self-energy in order
to obtain accurate quasiparticle energies that include the static electron-hole interaction. The secondary
purpose was to obtain the BS solutions, including the dynamical electron-hole interaction. The dielectric
function obtained by means of the Bethe-Salpeter equation contains information on the energy of exciton
Table 1. The parameters of electronic structure: the band gap Eg and the highest occupied molecular
orbital energy EHOMO.
Molecule E
GGA
g , eV EGW
g , eV EBS
g , eV EHOMO, eV
VB 20 1.25 5.37 0.95 −4.81
VG 1 1.09 5.03 0.51 −5.30
VG 2 1.10 4.91 0.60 −5.10
VG 3 0.97 6.07 0.29 −5.94
VG 9 1.20 5.43 0.74 −6.02
14701-3
Yu.V. Klysko, S.V. Syrotyuk
VG 1
ε 2
(a
.u
)
0.01
0.1
1
ID
O
S
(s
t./
eV
)
1
10
100
1,000
E (ev)
0 1 2 3 4 5
VG 2
ε 2
(a
.u
)
0.01
0.1
1
ID
O
S
(s
t./
eV
)
1
10
100
1,000
E (ev)
0 1 2 3 4 5
VG3
ε 2
(a
.u
)
0.01
0.1
1
ID
O
S
(s
t./
eV
)
1
10
100
1,000
E (ev)
0 1 2 3 4 5
VG 9
ε 2
(a
.u
)
0.01
0.1
1
ID
O
S
(s
t./
eV
)
1
10
100
1,000
E (ev)
0 1 2 3 4 5
VB 20
ε 2
(a
.u
)
0.01
0.1
1
ID
O
S
(s
t./
eV
)
1
10
100
1,000
E (ev)
0 1 2 3 4 5
Figure 2. (Colour online) Imaginary part of the DF ε2 (black line) and DOS (red line) obtained for
molecules. Experimental absorption peaks are indicated by blue lines [23–25]. Black solid line for
VB 20 corresponds to the experimental value of Eg [14]. The experimental data correspond to solid-state
materials.
excitations that may be compared to measured optical absorption. The results obtained here may be
considered as the basis for assessing the validity of the GGA, GW and BS approaches, and for obtaining
theoretical absorption spectrum that would be well compared to the measured one. We found, that only
the BS approach provides a good comparison with the data of optical spectroscopic measurements. The
results for quasiparticle energies, obtained here for finite systems, show a significant difference compared
to those found for crystals [26, 27]. If for a crystal, parameter Eg, found in the approach of GW, is close to
the experimental value, then for molecules, only the energies of quasiparticle excitations, obtained from
BS equation, are well compared with the experimental data.
References
1. Müller M., Kübel C., Müllen K., Chem. Eur. J., 1998, 4, No. 11, 2099–2109,
doi:10.1002/(SICI)1521-3765(19981102)4:11<2099::AID-CHEM2099>3.0.CO;2-T.
2. Dötz F., Brand J.D., Ito S., Gherghel L., Müllen K., J. Am. Chem. Soc., 2000, 122, No. 32, 7707–7717,
doi:10.1021/ja000832x.
3. Feng X., Pisula W., Müllen K., Pure Appl. Chem., 2009, 81, No. 12, 2203–2224,
doi:10.1351/PAC-CON-09-07-07.
14701-4
https://doi.org/10.1002/(SICI)1521-3765(19981102)4:11%3C2099::AID-CHEM2099%3E3.0.CO;2-T
https://doi.org/10.1021/ja000832x
https://doi.org/10.1351/PAC-CON-09-07-07
Excited state properties of polycyclic hydrocarbons based dyes
4. Samorí P., Severin N., Simpson C.D., Müllen K., Rabe J.P., J. Am. Chem. Soc., 2002, 124, No. 32, 9454–9457,
doi:10.1021/ja020323q.
5. Fetzer J.C., Polycyclic Aromat. Compd., 2007, 27, No. 2, 143–162, doi:10.1080/10406630701268255.
6. Chen L., Li C., Müllen K., J. Mater. Chem. C, 2014, 2, 1938–1956, doi:10.1039/C3TC32315C.
7. Zhan X., Facchetti A., Barlow S., Marks T.J., Ratner M.A., Wasielewski M.R., Marder S.R., Adv. Mater., 2011,
23, No. 2, 268–284, doi:10.1002/adma.201001402.
8. Li C., Wonneberger H., Adv. Mater., 2012, 24, No. 5, 613–636, doi:10.1002/adma.201104447.
9. Liang N., Jiang W., Hou J., Wang Z., Mater. Chem. Front., 2017, 1, 1291–1303, doi:10.1039/C6QM00247A.
10. Lin Y., Li Y., Zhan X., Chem. Soc. Rev., 2012, 41, 4245–4272, doi:10.1039/C2CS15313K.
11. Lin Y., Zhan X., Mater. Horiz., 2014, 1, 470–488, doi:10.1039/C4MH00042K.
12. Yan C., Barlow S., Wang Z., Yan H., Jen A.K.-Y., Marder S.R., Zhan X., Nat. Rev. Mater., 2018, 3, 18003,
doi:10.1038/natrevmats.2018.3.
13. Akamatu H., Inokuchi H., J. Chem. Phys., 1950, 18, No. 6, 810–811, doi:10.1063/1.1747780.
14. Akamatu H., Inokuchi H., J. Chem. Phys., 1952, 20, No. 9, 1481–1483, doi:10.1063/1.1700784.
15. Shi M., Hao F., Zuo L., Chen Y., Nan Y., Chen H., Dyes Pigm., 2012, 95, No. 2, 377–383,
doi:10.1016/j.dyepig.2012.05.003.
16. Shi M.M., Chen Y., Nan Y.X., Ling J., Zuo L.J., Qiu W.M., Wang M., Chen H.Z., J. Phys. Chem. B, 2011, 115,
No. 4, 618–623, doi:10.1021/jp109683h.
17. Fückel B., Roberts D.A., Cheng Y.Y., Clady R.G.C.R., Piper R.B., Ekins-Daukes N.J., Crossley M.J.,
Schmidt T.W., J. Phys. Chem. Lett., 2011, 2, No. 9, 966–971, doi:10.1021/jz200270w.
18. Xiao P., Zhang J., Dumur F., Tehfe M.A., Morlet-Savary F., Graff B., Gigmes D., Fouassier J.P., Lalevée J.,
Prog. Polym. Sci., 2015, 41, 32–66, doi:10.1016/j.progpolymsci.2014.09.001.
19. Perdew J.P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77, 3865–3868, doi:10.1103/PhysRevLett.77.3865.
20. Onida G., Reining L., Rubio A., Rev. Mod. Phys., 2002, 74, No. 2, 601–659, doi:10.1103/revmodphys.74.601.
21. Ismail-Beigi S., Phys. Rev. B, 2006, 73, 233103, doi:10.1103/PhysRevB.73.233103.
22. Gonze X., Jollet F., Abreu Araujo F., Adams D., Amadon B., Applencourt T., Audouze C., Beuken J.-M.,
Bieder J., Bokhanchuk A., et al., Comput. Phys. Commun., 2016, 205, 106–131, doi:10.1016/j.cpc.2016.04.003.
23. Rauhut M.M., Roberts B.G., Maulding D.R., Bergmark W., Coleman R., J. Org. Chem., 1975, 40, No. 3,
330–335, doi:10.1021/jo00891a014.
24. Gruen H., Görner H., Photochem. Photobiol. Sci., 2009, 8, 1164–1171, doi:10.1039/B907913K.
25. Liu B., Fan D., Zhang Q., Chen Y., Zhu W., Front. Chem. China, 2010, 5, No. 2, 200–207,
doi:10.1007/s11458-010-0115-7.
26. Syrotyuk S., Shved V., Klysko Y.V., Acta Phys. Pol. A, 2018, 133, No. 4, 990–993,
doi:10.12693/APhysPolA.133.990.
27. Syrotyuk S., Shved V., Klysko Y.V., J. Nano- Electron. Phys., 2018, 10, No. 3, 03033,
doi:10.21272/jnep.10(3).03033.
Екситоннi властивостi пiгментiв на основi полiциклiчних
ароматичних вуглеводнiв
Ю.В. Клиско, С.В. Сиротюк
Кафедра напiвпровiдникової електронiки, Нацiональний унiверситет “Львiвська полiтехнiка”,
вул. С. Бандери, 12, 79013 Львiв, Україна
В данiй роботi представлено вивчення пiгментiв на основi полiциклiчних ароматичних вуглеводнiв з
використанням ab initio методiв. Список дослiджених матерiалiв включає промисловi зеленi пiгменти,
похiднi бензантрону, якi є перспективними для використання в органiчнiй електронiцi. На першому етапi
власнi функцiї та власнi значення були отриманi з використанням узагальненого градiєнтного наближен-
ня (GGA). На другому етапi квазiчастинковi електроннi властивостi розрахованi в рамках наближення GW.
Енергiї екситонiв, уявна частина дiелектричної функцiї та густина станiв були одержанi з рiвняння Бете-
Солпiтера (BS). Отриманi електроннi властивостi добре зiставляються з наявними екпериментальними
даними.
Ключовi слова: органiчнi напiвпровiдники, ab initio, електронна структура
14701-5
https://doi.org/10.1021/ja020323q
https://doi.org/10.1080/10406630701268255
https://doi.org/10.1039/C3TC32315C
https://doi.org/10.1002/adma.201001402
https://doi.org/10.1002/adma.201104447
https://doi.org/10.1039/C6QM00247A
https://doi.org/10.1039/C2CS15313K
https://doi.org/10.1039/C4MH00042K
https://doi.org/10.1038/natrevmats.2018.3
https://doi.org/10.1063/1.1747780
https://doi.org/10.1063/1.1700784
https://doi.org/10.1016/j.dyepig.2012.05.003
https://doi.org/10.1021/jp109683h
https://doi.org/10.1021/jz200270w
https://doi.org/10.1016/j.progpolymsci.2014.09.001
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/revmodphys.74.601
https://doi.org/10.1103/PhysRevB.73.233103
https://doi.org/10.1016/j.cpc.2016.04.003
https://doi.org/10.1021/jo00891a014
https://doi.org/10.1039/B907913K
https://doi.org/10.1007/s11458-010-0115-7
https://doi.org/10.12693/APhysPolA.133.990
https://doi.org/10.21272/jnep.10(3).03033
Introduction
Methods
Results and discussion
Conclusions
|