Kлонування та аналіз кДНК дефензину 1 сосни звичайної

Антифунгальний білок з молекулярною масою 5,6 кДа очищено з коренів семиденних проростків сосни звичайної. Мас-спектрометричним аналізом показано його приналежність до рослинних дефензинів. кДНК дефензину 1 сосни (PsDef1) довжиною 252 п. н. отримано методом ПЛР-ампліфікіції з кДНК бібліотеки Pinus s...

Full description

Saved in:
Bibliographic Details
Published in:Біополімери і клітина
Date:2007
Main Authors: Ковальова, В.А., Гут, І.Т., Кіямова, Р.Г., Філоненко, В.В., Гут, Р.Т.
Format: Article
Language:Ukrainian
Published: Інститут молекулярної біології і генетики НАН України 2007
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/157498
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Kлонування та аналіз кДНК дефензину 1 сосни звичайної / В.А. Ковальова, І.Т. Гут, Р.Г. Кіямова, В.В. Філоненко, Р.Т. Гут // Біополімери і клітина. — 2007. — Т. 23, № 5. — С. 398-404. — Бібліогр.: 25 назв. — укр., англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-157498
record_format dspace
spelling Ковальова, В.А.
Гут, І.Т.
Кіямова, Р.Г.
Філоненко, В.В.
Гут, Р.Т.
2019-06-20T04:14:15Z
2019-06-20T04:14:15Z
2007
Kлонування та аналіз кДНК дефензину 1 сосни звичайної / В.А. Ковальова, І.Т. Гут, Р.Г. Кіямова, В.В. Філоненко, Р.Т. Гут // Біополімери і клітина. — 2007. — Т. 23, № 5. — С. 398-404. — Бібліогр.: 25 назв. — укр., англ.
0233-7657
http://dx.doi.org/10.7124/bc.000779
https://nasplib.isofts.kiev.ua/handle/123456789/157498
577.112.
Антифунгальний білок з молекулярною масою 5,6 кДа очищено з коренів семиденних проростків сосни звичайної. Мас-спектрометричним аналізом показано його приналежність до рослинних дефензинів. кДНК дефензину 1 сосни (PsDef1) довжиною 252 п. н. отримано методом ПЛР-ампліфікіції з кДНК бібліотеки Pinus sylvestris L. та клоновано у вектор рЕТ 23d(+). PsDef1 кДНК кодує білок з 83 амінокислотних залишків (а. з.), який містить N-кінцевий сигнальний пептид з 33 а. з. Зріла форма білка вирізняється наявністю специфічних консервативних залишків, властивих усім рослинним дефензинам. Показано структурну та функціональну подібність між PsDef1 та дефензинами групи І.
Antifungal protein with a molecular weight 5.6 kDa was purified from 7-days old Scots pine seedlings. LC-MS/MS analysis revealed this protein to belong to plant defensins. A pine defensin 1 cDNA (PsDef1), 252 b. p. long, was obtained by PCR amplification from Pinus sylvestris L. cDNA library and was cloned into vector pET 23d(+). PsDef1 cDNA encodes 83-amino acid protein with 33-amino acid N-terminal signal peptide. The mature protein is characterized by the presence of specific conserved residues common to all plant defensins. Structural and functional similarity between PsDef1 and defensins of group 1 has been shown.
Антифунгальный белок с молекулярной массой 5,6 кДа очищен из корней семидневных проростков сосны обыкновенной. Масс-спектрометрическим анализом показана його принадлежность к растительным дефензинам. кДНК дефензина 1 сосны (PsDef1) длиной 252 п. н. получена методом ПЦР-амплификации из кДНК библиотеки Pinus sylvestris L. и клонирована в вектор рЕТ23d(+). PsDef1 кДНК кодирует белок из 83 аминокислотных остатков (а. о.) с N-концевым сигнальным пептидом из 33 а. о. Для зрелой формы характерно наличие специфических консервативных остатков, свойственных всем растительным дефензинам. Показано структурное и функциональное сходство между PsDef1 и дефензинами группы І.
uk
Інститут молекулярної біології і генетики НАН України
Біополімери і клітина
Структура та функції біополімерів
Kлонування та аналіз кДНК дефензину 1 сосни звичайної
Kлонирование и анализ кДНК дефензина 1 сосны обыкновенной
Cloning and analysis of defensin 1 cDNA from Scots pine
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Kлонування та аналіз кДНК дефензину 1 сосни звичайної
spellingShingle Kлонування та аналіз кДНК дефензину 1 сосни звичайної
Ковальова, В.А.
Гут, І.Т.
Кіямова, Р.Г.
Філоненко, В.В.
Гут, Р.Т.
Структура та функції біополімерів
title_short Kлонування та аналіз кДНК дефензину 1 сосни звичайної
title_full Kлонування та аналіз кДНК дефензину 1 сосни звичайної
title_fullStr Kлонування та аналіз кДНК дефензину 1 сосни звичайної
title_full_unstemmed Kлонування та аналіз кДНК дефензину 1 сосни звичайної
title_sort kлонування та аналіз кднк дефензину 1 сосни звичайної
author Ковальова, В.А.
Гут, І.Т.
Кіямова, Р.Г.
Філоненко, В.В.
Гут, Р.Т.
author_facet Ковальова, В.А.
Гут, І.Т.
Кіямова, Р.Г.
Філоненко, В.В.
Гут, Р.Т.
topic Структура та функції біополімерів
topic_facet Структура та функції біополімерів
publishDate 2007
language Ukrainian
container_title Біополімери і клітина
publisher Інститут молекулярної біології і генетики НАН України
format Article
title_alt Kлонирование и анализ кДНК дефензина 1 сосны обыкновенной
Cloning and analysis of defensin 1 cDNA from Scots pine
description Антифунгальний білок з молекулярною масою 5,6 кДа очищено з коренів семиденних проростків сосни звичайної. Мас-спектрометричним аналізом показано його приналежність до рослинних дефензинів. кДНК дефензину 1 сосни (PsDef1) довжиною 252 п. н. отримано методом ПЛР-ампліфікіції з кДНК бібліотеки Pinus sylvestris L. та клоновано у вектор рЕТ 23d(+). PsDef1 кДНК кодує білок з 83 амінокислотних залишків (а. з.), який містить N-кінцевий сигнальний пептид з 33 а. з. Зріла форма білка вирізняється наявністю специфічних консервативних залишків, властивих усім рослинним дефензинам. Показано структурну та функціональну подібність між PsDef1 та дефензинами групи І. Antifungal protein with a molecular weight 5.6 kDa was purified from 7-days old Scots pine seedlings. LC-MS/MS analysis revealed this protein to belong to plant defensins. A pine defensin 1 cDNA (PsDef1), 252 b. p. long, was obtained by PCR amplification from Pinus sylvestris L. cDNA library and was cloned into vector pET 23d(+). PsDef1 cDNA encodes 83-amino acid protein with 33-amino acid N-terminal signal peptide. The mature protein is characterized by the presence of specific conserved residues common to all plant defensins. Structural and functional similarity between PsDef1 and defensins of group 1 has been shown. Антифунгальный белок с молекулярной массой 5,6 кДа очищен из корней семидневных проростков сосны обыкновенной. Масс-спектрометрическим анализом показана його принадлежность к растительным дефензинам. кДНК дефензина 1 сосны (PsDef1) длиной 252 п. н. получена методом ПЦР-амплификации из кДНК библиотеки Pinus sylvestris L. и клонирована в вектор рЕТ23d(+). PsDef1 кДНК кодирует белок из 83 аминокислотных остатков (а. о.) с N-концевым сигнальным пептидом из 33 а. о. Для зрелой формы характерно наличие специфических консервативных остатков, свойственных всем растительным дефензинам. Показано структурное и функциональное сходство между PsDef1 и дефензинами группы І.
issn 0233-7657
url https://nasplib.isofts.kiev.ua/handle/123456789/157498
citation_txt Kлонування та аналіз кДНК дефензину 1 сосни звичайної / В.А. Ковальова, І.Т. Гут, Р.Г. Кіямова, В.В. Філоненко, Р.Т. Гут // Біополімери і клітина. — 2007. — Т. 23, № 5. — С. 398-404. — Бібліогр.: 25 назв. — укр., англ.
work_keys_str_mv AT kovalʹovava klonuvannâtaanalízkdnkdefenzinu1sosnizvičainoí
AT gutít klonuvannâtaanalízkdnkdefenzinu1sosnizvičainoí
AT kíâmovarg klonuvannâtaanalízkdnkdefenzinu1sosnizvičainoí
AT fílonenkovv klonuvannâtaanalízkdnkdefenzinu1sosnizvičainoí
AT gutrt klonuvannâtaanalízkdnkdefenzinu1sosnizvičainoí
AT kovalʹovava klonirovanieianalizkdnkdefenzina1sosnyobyknovennoi
AT gutít klonirovanieianalizkdnkdefenzina1sosnyobyknovennoi
AT kíâmovarg klonirovanieianalizkdnkdefenzina1sosnyobyknovennoi
AT fílonenkovv klonirovanieianalizkdnkdefenzina1sosnyobyknovennoi
AT gutrt klonirovanieianalizkdnkdefenzina1sosnyobyknovennoi
AT kovalʹovava cloningandanalysisofdefensin1cdnafromscotspine
AT gutít cloningandanalysisofdefensin1cdnafromscotspine
AT kíâmovarg cloningandanalysisofdefensin1cdnafromscotspine
AT fílonenkovv cloningandanalysisofdefensin1cdnafromscotspine
AT gutrt cloningandanalysisofdefensin1cdnafromscotspine
first_indexed 2025-11-24T11:38:39Z
last_indexed 2025-11-24T11:38:39Z
_version_ 1850845787788935168
fulltext Mo lec u lar clon ing and characterization of defensin 1 from Scots pine V. A. Kovalyova, I.T. Gout1, R. G. K³yamova2, V. V. Filonenko2, R. T. Gout De part ment of For estry, Na tional For estry Uni ver sity of Ukraine, Chuprynka St., 103, Lviv, 79057, Ukraine 1Uni ver sity Col lage Lon don, Gower Street, Lon don WC1E 6BT, United King dom 2In sti tute of mo lec u lar bi ol ogy and ge net ics NAS of Ukraine Academicain Zabolotnog str., 150, Kyiv, 03680 Ukraine vakovaleva@mail.ru A pro tein with antifungal ac tiv ity and a mo lec u lar weight of 5.6 kDa was pu ri fied from 7-day-old Scots pine seed lings. The LC-MS/MS anal y sis re vealed that pu ri fied pro tein is highly ho mol o gous to plant defensins. The ob tained se quences and da ta base searches al lowed us to de sign a set of prim ers for mo lec u lar clon ing of a full length cod ing se quence, cor re spond ing to Scots pine defensin 1 (PsDef1). This was achieved by a PCR ap proach, us ing Pinus sylvestris ñDNA li brary as a tem plate. The spe cific prod uct of PCR am pli fi ca - tion was cloned into ðÅÒ 23d(+) vec tor and se quenced. Bioinformatic anal y sis of gen er ated se quences showed that the cod ing se quence of PsDef1 cDNA has the po ten tial to en code a pro tein of 83 amino ac ids in length. The first 33 amino ac ids cor re spond to the N-ter mi nal sig nal pep tide, which is re moved af ter pro - cess ing. The ma ture pro tein pos sesses con served res i dues which are com mon to all plant defensins. Based on antifungal prop er ties and se quence sim i lar i ties PsDef1 was as signed to group 1 of plant defensins. Key words: Scots pine, defensin PsDef1, mo lec u lar clon ing In tro duc tion. In the last de cade, sig nif i cant prog - ress has been made in un der stand ing the mech a nisms which co or di nate the re sponse of plants to en vi ron men - tal changes and patho genic or gan isms, in par tic u lar. The ac ti va tion of tran scrip tion of antimicrobial pro - teins (AMP), which in crease the re sis tance of plants to patho genic or gan isms or in hibit the growth of patho - gens, is con sid ered to be cru cial in driv ing the im mune re sponse to patho genic fac tors [1]. The fam ily of plant AMPs in cludes thionins, lipid-trans port pro teins, heveins, snakins, defensins etc. AMPs are small (2–9 kDa) se cre tory pro teins, whose com pact struc ture is sta bi lised by disulphide bridges. The num ber and lo - cal isa tion of -Cys-Cys- pairs is a spe cific fea ture of each AMPs group. Antimicrobial pro teins ex hibit high ac tiv ity against many patho genic bac te ria and fungi both in vi tro and in trans gen ic plants [2, 3]. Among AMPs, plant defensins pos sess a very broad spec trum of bi o log i cal ac tiv ity. Their mo lec u lar weight is 4–6 kDa, a ter tiary struc ture is formed by an a-he lix, 3 anti-par al lel b-sheets and 4 intramolecular disulphide bridges [2, 4]. The pro tec tive func tion of plant defensins is de fined by their antifungal [5, 6], an ti bac te - rial [7], and in sec ti cidal [8] ac tiv i ties. It is im por tant to note that some of these pro teins are known to act as pro - 398 ISSN 0233-7657. Biopolymers and cell. 2007. vol. 23. N 5. Translated from Ukrainian. Ó V. A. KOVALYOVA, R. G. K²YAMOVA, I.T. GOUT, V. V. FILONENKO, R. T. GOUT, 2007 te ase in hib i tors [7, 9]. The het er o ge ne ity of prop er ties and struc ture/func tion de ter mi nants cre ated the ba sis for the clas si fi ca tion of defensins into four groups [6]. The rep re sen ta tives of group I (morphogenic group) are known to in hibit the growth of a wide range of phytopathogenic fungi and in duce mor pho log i cal changes in my ce lium. The antifungal ac tiv ity of group II defensins is not as so ci ated with mor pho log i cal changes in fungi. The an ti bac te rial fea tures of group I and II defensins are ei ther not sig nif i cant or ab sent at all. Plant defensins of group III are ac tive against bac - te ria, but lack any fungistatic prop er ties. They were found to in hibit a-amylases and pro teas es in vi tro as well as pro tein syn the sis in a cell-free sys tem. Defensins be long ing to group IV pos sess both antifungal ac tiv ity with out any morphogenic ef fect and high an ti bac te rial ac tiv ity against gram-pos i tive and gram-neg a tive patho gens [10]. Defensins have been iden ti fied in var i ous tax o - nomic groups of plants. The ex pres sion of four defensin-like pro teins has been dem on strated in gym - no sperm plants, in clud ing defensin pre cur sor (GbD) Ginkgo biloba (Ginkgoaceae fam ily) [11], defensin (PgD1) Picea glauca [12], pu ta tive plant defensin SPI1 and SPI1B Picea abies (Pinaceae fam ily) [13]. To date, plant defensins were iso lated from seeds, veg e ta tive and gen er a tive or gans of gym no sperm. Re cently, we have pu ri fied defensin-like pro tein from gym no sperm which was sim i lar to AMP in its antifungal prop er ties [14]. Mo lec u lar clon ing and com par a tive anal y sis of pri mary se quences of Scots pine defensin 1 (PsDef1) with other plant defensins are pre sented in this study.. Ma te ri als and Meth ods. In this study we used se - lected vi a ble seeds of Pinus sylvestris L. ob tained from Busk State For estry, L’viv re gion, Ukraine. The cDNA se quence of Pinus sylvestris Defensin 1 was cloned into bac te rial ex pres sion vec tor pET 23d (+) (Novagen, USA). The pu ri fi ca tion of Defensin from Pinus sylvestris seed lings was car ried out as pre vi ously de scribed [14–16]. The pu rity of prep a ra tions was ana lysed by gra di ent (5–22%) gel elec tro pho re sis at denaturating con di tions in Laemmli sys tem [17] or in tris-tricine buffer sys tem [18]. Sep a rated pro teins were visu al ised by sil ver stain ing. The iden ti fi ca tion of pu ri fied pro - teins was per formed by mass-spec trom e try at Uni ver - sity Col lege Lon don. The bands of in ter est were cut out from the gel, re duced with 10 mM dithiothreitol and alkalined with 100 mM of io dine acetamide. The sam - ples were then hy dro lysed with trypsin. The mix ture of gen er ated proteolytic pep tides was frac tion ated on PepMap C18 col umn (LC Packings, the Neth er lands) for 30 min in den sity gra di ent (5–40%) of acetonitrile and 0.1% for mic acid. Mass-spec trom e try anal y sis was per formed us ing Q-TOF I (Micromass, UK). Pep tide se quences gen er ated by Mas cot (Matrixscience, UK) were used to search Swissprot and EST GenBank da ta - bases. The set of prim ers used for the am pli fi ca tion of PsDef1 cDNA was de signed us ing the re sults of mass-spec trom e try anal y sis and the align ment of nu cle - o tide se quences cor re spond ing to Defensins from Pinus pinaster (mar i time pine) and P. taeda (loblolly). The am pli fi ca tion of PsDef1 cDNA was car ried out in two sep a rate PCR re ac tions us ing as tem plates 1 ml of pri - mary (1.2·106 pfu/ml), or am pli fied (2·109 pfu/ml) P. sylvestris cDNA ex pres sion li brary. The li brary was pro duced in our lab o ra tory from mRNA of Pinus sylvestris root seed lings as pre vi ously de scribed [19] For PCR am pli fi ca tion, we used oligonucleotides CR763 (5'-CCATTCCATGGCGGGCAAGGGAGT-3') and CR764 (5'-CATGAGAATTCTCAAGGGCAG- GGTTTGTA-3'), which con tained NcoI and EcoRI clon ing sites. PCR re ac tions were car ried out us ing Pro teus am pli fier (Hel ena Bio Sci ences, UK), and Tag poly mer ase from Fermentas (Lith u a nia). The fol low - ing con di tions were used for am pli fi ca tion: 94°C for 3 min and then 30 cy cles (94°C, 1 min; 60°C, 1 min; 72°C, 1 min) and fi nally 5 min at 72°C. PCR prod ucts were ana lysed in 1.5% agarose gel in Tris-bo rate buffer, pH 8.3 (50 mM tris-H3BO3, 2 mM EDTA) at 20 V/cm2. Am pli fied DNA of the ex pected size was eluted from the gel us ing DNA ex trac tion kit (Qiagen, USA). The prod uct of am pli fi ca tion and pET23d(+) plasmid were di gested with NcoI and EcoRI, sep a rated by gel elec tro pho re sis and pu ri fied as de scribed above. Li ga tion re ac tion was per formed for 2 hours at room tem per a ture us ing T4 phage DNA ligase (Fermentas) ac - cord ing to the man u fac turer’s pro to col. XL-1 Blue com - pe tent cells were trans formed with the li ga tion mix ture by a stan dard method [20]. The pres ence of the DNA in - MO LEC U LAR CLON ING AND CHARACTERIZATION OF DEFENSIN 1 399 sert in pET23d(+) plasmid was de tected by re stric tion anal y sis with NcoI and EcoRI, and by PCR with prim ers CR 763 and CR 764. Nu cle o tide se quence of the cloned DNA frag ment was de ter mined by au to matic DNA se - quenc ing, ABI 73TM (Ap plied Biosystems, UK). Bioinformatic anal y sis and se quence align ments of the nu cle o tide and amino acid se quences of Pinus sylvestris defensin 1 were per formed us ing elec tronic search ser vice BLAST 2.0, Na tional Cen tre of Bio tech - no log i cal In for ma tion (NCBI), USA. Re sults and Dis cus sion. Re cently we have pu ri fied low mo lec u lar weight pro tein, spe cific for high in hib i tory ac tiv ity to wards some phytopathogenic fungi, from 7-day-old root seed lings of Pinus sylvestris. Bio chem i cal prop er ties and strong antifungal ac tiv ity clearly in di cated that pu ri fied pro tein be longs to the group of plant defensins [14]. The mo lec u lar weight of defensin-like pro tein from Pinus sylvestris was es ti mated to be ap prox i - mately 10 kDa when ana lysed by 5-22% SDS-PAAG anal y sis (Fig.1, a). To de ter mine the size of pu ri fied pro - tein more pre cisely, we em ployed tris-tricine buffer sys - tem, which is op ti mal for the sep a ra tion of low-mo lec u lar pro teins and pep tides. The sep a ra tion at this con di tions re vealed that the molecular weight of pu ri fied pro tein is ap prox i mately 5–6 kDa (Fig.1, b), which is sim i lar to plant defensins. To de ter mine the iden tity of pu ri fied pro tein with strong antifungal ac tiv ity, the mass-spec trom e try anal - y sis was car ried out. The pro tein of in ter est was treated with trypsin and the amounts of gen er ated pep tides ana - lysed by Q-TOF I. In this anal y sis, we found one pep - tide of 19 amino ac ids in length, TEGFPTGSCDFHVAGR (Fig.2, a). The search for var i ous da ta bases in GenBank, us ing BLASTP electronic sys tem (www.ncbi.nlm.nih.gov/blast/BLAST.cgi) re vealed cDNA clones with high level of homology (Fig.2, b). The high est level of homology was ob served with gym - no sperm defensins: a cor re spond ing pep tide from GbD of G. biloba has 94% homology, while SPI1 of P. abies and PgD1 of P. glauca ex hibit 87% homology. These re sults clearly in di cate that a pro tein which was pu ri fied from Pinus sylvestris seed lings and later shown to pos - sess antifungal ac tiv ity be longs to the fam ily of plant defensins. There fore, we named it Pinus sylvestris Defensin 1 (PsDef 1). Since nu cle o tide se quences of defensins from P. abies and P. glauca are only 252 bp long, it could be pos si ble to iden tify EST clones from Pinus sylvestris cDNA li brar ies, which might en code the full length cod ing se quence of PsDef 1, us ing the data of the mass-spec trom e try anal y sis. Hav ing em ployed TBLASTN soft ware to search var i ous da ta bases, we iden ti fied 10 clones in cDNA li brar ies from P. pinaster and 23 clones from P. taeda which pos sessed pro tein se quences with very high level of homology to the pep - tide iden ti fied by mass-spec trom e try. It is note wor thy that the level of homology be tween their cod ing re gions was 95%, while the N- and C-ter mi nal frag ments were com pletely iden ti cal. These fea tures were taken into ac - count when we de signed the prim ers for mo lec u lar clon ing of a cDNA clone for PsDef 1. For mo lec u lar clon ing of P. sylvestris defensin 1, we used a cDNA li brary cre ated in our lab o ra tory from the 7-day-old root seed lings [19]. Pri mary and am pli - fied li brar ies were used as tem plates dur ing PCR am pli - fi ca tion with a set of prim ers, spe cific to P. sylvestris defensin 1. Elec tro pho retic anal y sis of PCR prod ucts re vealed the pres ence of a ma jor band with an ex pected size of 270 bp (Fig.3, a). The prod uct of am pli fi ca tion KOVALYOVA V. A. ET AL. 400 Fig.1 SDS-PAGE anal y sis of antifungal pro tein from Pinus sylvestris: sep a ra tion of pro teins in 5–22% gra di ent gel in Laemmle’s sys tem (a); sep a ra tion of pro teins in 15% gel with tris-tricine buffer (b). Sep a rated pro teins were vi su al ized by silver staining. was cloned into pET 23d(+) vec tor which was then trans formed into XL-1 Blue com pe tent cells. The pres - ence of the cDNA in sert in the re sult ing plasmid was con firmed by both PCR (Fig.3, b) and re stric tion anal y - sis (Fig.3, c). DNA se quenc ing re vealed the in sert of 252 bp in length (Fig.4, a), which we de pos ited in GenBank, No.EF455616. Bioinformatic anal y sis showed that de ducted amino acid se quence con tains a pep tide which is iden ti cal to that iden ti fied by mass-spec trom e try. No ta bly, cDNA PsDef1 shows MO LEC U LAR CLON ING AND CHARACTERIZATION OF DEFENSIN 1 401 Fig.2 The iden ti fi ca tion of antifungal pro tein from Pinus sylvestris by mass-spec trom e try: (a) the se quence of gen er ated tryptic pep tide – TEGFPTGSCDFHVAGR; (b) and se quence align ment of the tryptic pep tide with cor re spond ing pep tides from gym no sperm defensins. Fig.3 Clon ing of Pinus sylvestris defensin 1 cDNA: (a) the prod ucts of PCR am pli fi ca tion from pri mary (1) and am pli fied cDNA li brary (2); M – 1 kb Plus DNA Lad der GibcoBRL; b – the anal y sis of pET23d-PsDef plasmid by PCR (1); M – 1 kb DNA Lad der Fermentas; c – re stric tion anal y sis of pET23d-PsDef1 plasmid us ing endonucleases EcoRI and NcoI (1); M – 1 kb DNA Lad der Fermentas. 84% iden tity with nu cle o tide se quences of defensins from Pinacea fam ily and 77% iden tity with G. biloba from Ginkgoaceae fam ily. Anal y sis of de ducted amino acid se quence of Pinus sylvestris defensin 1 (83aa) us ing SignalP soft ware (www.cbs.dtu.dk/ser vices/SignalP) re vealed the pres - ence of the N-ter mi nal sig nal pep tide of 33aa, which is a spe cific fea ture of plant defensins. In ad di tion, all se - cre tory pro teins are known to pos sess the sig nal pep - tide. The ma ture form of PsDef1 is 50aa in length, which is the same for other gym no sperm defensins (Fig.4, b). Cal cu lated mo lec u lar weight of PsDef1 is 5601.6 Da, which is in good cor re la tion with the re sults of SDS-PAGE anal y sis (Fig.1, b). The value of isoelectric point of 8.9 was ob tained on the ba sis of amino acid se quence, us ing pI/Mw soft ware [21]. The search in amino acid se quence of PsDef1 for known do mains us ing Mo tif Scan soft ware (scansite.mit.edu/motifscan) re vealed that se quences be - tween amino acid res i dues 35–85 form the struc ture, known as gamma-thionin, which pro vides the pri mary name of plant defensins – g-thionins. This do main con - sists of an a-he lix and three anti-par al lel b-sheets, con - nected by four disulphide bridges [2]. The spe cific fea - KOVALYOVA V. A. ET AL. 402 Fig.4 Nu cle o tide and de ducted amino acid se quences of PsDef1: (a) sig nal pep tide is un der lined; the po si tion of the tryptic peptided iden ti - fied by mass-spec trom e try is in di cated by a dashed line; pro tein se quence align ment of PsFef1 with amino acid se quences of gym no sperm defensins; (b) and the rep re sen ta tives of dif fer ent groups of plant defensins (c) the se quences of sig nal pep tides were elim i nated; the ver ti cal line is made for max i mal align ment of se quences; stars in di cate iden ti cal amino ac ids; con ser va tive cysteins are boxed; join ing lines cor re - spond to disulphide bridges. Ab bre vi a tions used: Psdef1 – defensin 1 Pinus sylvestris (ac ces sion no.EF455616); GbD – defensin pre cur sor Ginkgo biloba (ac ces sion no.AY695796); SPI1 – pu ta tive gamma-thionin pro tein Picea abies (ac ces sion no.X91487); PgD1 – defensin Picea glauca (ac ces sion no.AY494051); SPI1B – pu ta tive plant defensin Picea abies (ac ces sion no.AF548021); RsAFP2 – antifungal pro - tein 2 Raphanus sativus (ac ces sion no.U18556); DmAMP1 – defensin Dahlia merckii (ac ces sion no.AAB34972); SIa2 – in hib i tor of in sect a-amylases 2 Sor ghum bicolour (ac ces sion no.P21924); So-D2 – antimicrobial pep tide D2 Spinacia oleracea (ac ces sion no.P81571) ture of this do main is the fact that only 23% of amino acid res i dues are con ser va tive, in clud ing all cysteins (po - si tions 4, 15, 21, 25, 36, 45, 47, and 51), two glycines (13 and 34), serine (8), an ar o matic res i due in po si tion 11 and glutamic acid in po si tion 29 (start ing point is RsAFP2 – the most stud ied plant defensin) (Fig.4, c). De tailed anal y sis of the pri mary struc ture of defensin 1 and known Picea defensins al lowed us to re - veal 81% iden tity be tween these pro teins. The high level of homology points out pos si ble sim i lar ity in their bi o log i cal ac tiv ity. The overexpression of SPI1 in em - bry onic cells of P. abies L. is known to in crease the re - sis tance of these cells to in fec tion by Heterobasidion annosum [22]. Re cently, we have dem on strated high antifungal ac tiv ity of en dog e nous PsDef1 to wards phytopathogenic fungi Fusarium, Alternaria, and Bo - try tis in vi tro [14, 23]. Com par a tive anal y sis of PsDef1 amino acid se - quences with that of dif fer ent groups of defensins, namely RsAFP2 (group I), DmAMP1 (II), SIa2 (III), and So-D2 (IV) re vealed high level of homology with RsAFP2 (58%) and So-D2 (59%). Lit er a ture data tes - tify in fa vour of high antifungal ac tiv ity of these plant defensins, the IC50 value (pro tein con cen tra tion, which shows 50% in hi bi tion of fun gal growth) in re gards of Fusarium fam ily is lower than 1 mM [7, 23]. The IC50 for en dog e nous PsDef1 in the same ex per i men tal set up was found to be 0.7 mM [14, 24]. One spe cific fea ture of these defensins is a high pos i tive charge at pH 7.0: PsDef1 has the charge of +6.7 and sim i lar val ues are found for RsAFP2 (group I) – +5.8 and So-D2 (IV) – +7.6. It has been pre vi ously dem on strated that antifungal ac tiv ity of AMP is de ter mined by the value of pos i tive charge of mol e cule [24]. We have pre vi ously shown that en dog e nous PsDef1 causes mor pho log i cal changes in fungi my ce - lium, which pro vided the ground for its as sign ment to morphogenic group I of plant defensins [14]. Ex per i - ments with site-di rected mu ta gen e sis re vealed the bi o - logic ac tiv ity of each group of defensins to be de ter - mined by short con ser va tive se quences, which are spe - cific for each group only, or might be de fined by a sin gle amino acid. Com par a tive anal y sis of pri mary amino acid se quences be tween PsDef1 and RsAFP2 al - lowed us to de tect a highly ho mol o gous re gion (2–10aa), a hy dro pho bic re gion (38–41 a.r.), which are im por tant de ter mi nants of their antifungal ac tiv i ties, pos si bly func tion ing as bind ing sites for spe cific re cep - tors on fun gal mem branes. The sub sti tu tion of Tyr38 for Gly in RsAFP2 re sulted in the change of pro tein con for ma tion and the loss of its ac tiv ity. No ta bly, this res i due is highly con served in plant defensins, which be long to groups II and III. In PsDef1 this po si tion is oc cu pied by ho mol o gous ar o matic amino acid phenylalanine. An other con served amino acid in both groups of defensins is Lys44 and its sub sti tu tion for a neu tral res i due de creases antifungal ac tiv ity of RsAFP2 sig nif i cantly [25]. Tak ing into ac count that PsDef1 and RsAFP-2 ex hibit sig nif i cant struc tural sim i lar i ties and be long to the same fam ily of plant defensins, one might ex pect the sim i lar ity of mo lec u lar mech a nisms co or di - nat ing their antifungal ac tiv i ties. There fore, in this study we pres ent mo lec u lar clon - ing of Pinus sylvestris defensin 1 for the first time. The find ings pre sented open for us the op por tu ni ties for the fol low ing: i) pro duc ing re com bi nant PsDef1 and in ves - ti gat ing its bio chem i cal, struc tural, and func tional prop er ties; ii) gen er at ing spe cific an ti bod ies against PsDef1, which would be par tic u larly use ful to study its ex pres sion in Pinus sylvestris tis sues at var i ous con di - tions; iii) elu ci dat ing antifungal action of plant defensins. Â. À. Êî âà ëå âà, È. Ò. Ãóò, Ð. Ã. Êèÿ ìî âà, Â. Â. Ôè ëî íåí êî, Ð. Ò. Ãóò Këî íè ðî âà íèå è àíà ëèç êÄÍÊ äå ôåí çè íà 1 ñî ñíû îá ûê íî âåí íîé Ðå çþ ìå Àíòèôóíãàëüíûé áå ëîê ñ ìî ëå êó ëÿð íîé ìàñ ñîé 5,6 êÄà î÷è ùåí èç êîð íåé ñå ìè äíåâ íûõ ïðî ðîñ òêîâ ñî ñíû îá ûê íî âåí íîé. Ìàññ-ñïåê òðî ìåò ðè ÷åñ êèì àíà ëè çîì ïî êà çà íà éîãî ïðè íàä - ëåæ íîñòü ê ðàñ òè òåëü íûì äå ôåí çè íàì. êÄÍÊ äå ôåí çè íà 1 ñî - ñíû (PsDef1) äëè íîé 252 ï. í. ïî ëó ÷å íà ìåòîäîì ÏÖÐ-àì ïëè ôè êà öèè èç êÄÍÊ áèá ëè î òå êè Pinus sylvestris L. è êëî íè ðî âà íà â âåê òîð ðÅÒ23d(+). PsDef1 êÄÍÊ êî äè ðó åò áå ëîê èç 83 àìè íî êèñ ëîò íûõ îñòàò êîâ (à. î.) ñ N-êîí öå âûì ñèã íàëü - íûì ïåï òè äîì èç 33 à. î. Äëÿ çðå ëîé ôîð ìû õà ðàê òåð íî íà ëè - ÷èå ñïå öè ôè ÷åñ êèõ êîí ñåð âà òèâ íûõ îñòàò êîâ, ñâî éñòâåí íûõ âñåì ðàñ òè òåëü íûì äå ôåí çè íàì. Ïî êà çà íî ñòðóê òóð íîå è ôóíê öè î íàëü íîå ñõî äñòâî ìåæ äó PsDef1 è äå ôåí çè íà ìè ãðóï - ïû ². Êëþ ÷å âûå ñëî âà: ñî ñíà îá ûê íî âåí íàÿ, äå ôåí çèí PsDef1, ìî - ëå êó ëÿð íîå êëî íè ðî âà íèå. MO LEC U LAR CLON ING AND CHARACTERIZATION OF DEFENSIN 1 403 REFERENCES 1. Selitrennikoff C. P. Antifungal proteins // Appl. Environ. Microb.–2001.–67.–P. 2883–2894. 2. Broekaert W. F., Cammue B. P. A., De Bolle M. F. C., Thevissen K., De Samblanx G. W., Osborn R. W. Antimicrobial peptides from plants // Crit. Rev. Plant. Sci.–1997.–16.–P. 297–323. 3.Garsia-Olmedo F., Molina A., Alamillo J. M., Rodrigues-Palenzuela P. Plant defence peptides // Biopolymers.–1998.–47.–P. 479–491. 4. Thomma B. P. H. J., Cammue B. P. A., Thevissen K. Plant defensins // Planta.–2002.–216.–P. 193–202. 5. Gao A. G., Hakimi S. M., Mittanck C. A., Wu Y., Woerner B. M., Stark D. M., Shah D. M., Liang J., Rommens C. M. Fungal pathogen protection in potato by expression of a plant defensin peptide // Nat. Biotechnol.–2000.–18.–P. 1307– 1310. 6. Lay F. T., Brugliera F., Anderson M. A. Isolation and properties of floral defensins from ornamental tobacco and petunia // Plant Physiol.–2003.–131.–P. 1283–1293. 7. Osborn R. W., De Samblanx G. W., Thevissen K., Goderis I., Torrekenes S., vanLeuven F., Attenborough S., Rees S. B., Broekaert W. F. Isolation and characterization of plant defensins from seeds of Asteracea, Fabaceae, Hippocastanaceae and Saxifragaceae // FEBS Lett.– 1995.–368.–P. 257–262. 8. Chen K. C., Lin C. Y., Kuan C. C., Sung H. Y., Chen C. S. A novel defensin encoded by a mungbean cDNA exhibits insecticidal activity against bruchid // J. Agr. and Food Chem.–2002.–50.–P. 7258–7263. 9. Wijaya R., Neumann G. M., Condron R., Hughes A. B., Polya G. M. Defense proteins from seed of Cassia fistula include a lipid transfer protein homologue and a protease inhibitory plant defensin // Plant. Sci.–2000.–159.–P. 243–255. 10. Segura A., Moreno M., Molina A., Garcia-Olmedo F. Novel defensin subfamily from spinach (Spinacia oleracea) // FEBS Lett.–1998.–435.–P. 159–162. 11. Shen G., Pang Y., Wu W., Miao Z., Qian H., Zhao L., Sun X., Tang K. Molecular cloning, characterization and expression of a novel jasmonate-dependent defensin gene from Ginkgo biloba // J. Plant Physiol.–2005.–162.–Ð. 1160–1168. 12. Pervieux I., Bourassa M., Laurans F., Hamelin R., Seguin A. A spruce defensin showing strong antifungal activity and increased transcript accumulation after wounding and jasmonate treatments // Physiol. Mol. Plant Pathol.– 2004.–64.–P. 331–341. 13. Sharma P., L&&onneborg A. Isolation and characterization of a cDNA encoding a plant defensin-like protein from roots of Norway spruce // J. Plant Mol. Biol.–1996.–31.–P. 707–712. 14. Êî âàëü î âà Â. À., Ãóò ². Ò., Ãóò Ð. Ò. Õà ðàê òå ðèñ òè êà äâîõ äå ôåí çè íî ïîä³áíèõ á³ëê³â ç ïðî ðîñòê³â ñî ñíè çâè ÷àé íî¿ // Á³îïîë³ìåðè ³ êë³òèíà.–2006.–22, ¹ 2.–C. 126–131. 15. Êî âàëü î âà Â. À., Ãóò Ð. Ò. Íî âèé ìå òîä âèä³ëåí íÿ á³ëêà ç ïðî òèã ðèá êî âîþ àê òèâí³ñòþ ç ïðî ðîñòê³â íàñ³ííÿ ñî ñíè çâè ÷àé íî¿ // Íàóê. â³ñí. ÍËÒÓ Óêðà¿ íè.–2005.–15.4.– C. 30–34. 16. Êî âàëü î âà Â. À., Ãóò Ð. Ò. Âèä³ëåí íÿ á³ëê³â ³ç ôóíã³öèä - íîþ àê òèâí³ñòþ ç ïðî ðîñòê³â ñî ñíè çâè ÷àé íî¿ // Ôè çè î ëî - ãèÿ è áè î õè ìèÿ êóëü òóð íûõ ðàñ òå íèé.–2007.–39.– C. 114–120. 17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 // Nature.– 1970.–15.–P. 680–685. 18. Sch&&agger H., von Jagow G. Tricine-sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1–100 kDalton // Anal. Biochem.–1987.–166.–Ð. 368–379. 19. Êî âàëü î âà Â. À., Ãóò Ð. Ò. Ñòâî ðåí íÿ òà àíàë³ç á³áë³îò å êè ãåí³â ñî ñíè çâè ÷àé íî¿ // Íàóê. â³ñí. ÍËÒÓ Óêðà¿ - íè.–2007.–17.3.–Ñ. 30–34. 20. Ìà íè à òèñ Ò., Ôðè÷ Ý., Ñýì áðóê Äæ. Ìå òî äû ãå íå òè ÷åñ - êîé èí æå íå ðèè. Ìî ëå êó ëÿð íîå êëî íè ðî âà íèå.–Ì.: Ìèð, 1984.–480 ñ. 21. Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M. R., Appel R. D., Bairoch A. Protein ³dentification and analysis tools on the ExPASy Server // The proteomics protocols handbook / Ed. J. M. Walker.–New York: Humana press, 2005.–P. 571–608. 22. Elfstrand M., Fossdal C. G., Swedjemark G., Clapham D., Olsson O., Sitbon F., Sharma P., L&&onneborg A., von Arnold S. Identification of candidate genes for use in molecular breeding: a case study with the Norway spruce defensin-like gene, SPI1 // Silvae Genet.–2001.–50.– P. 75–81. 23. Terras F. R. G., Schoofs H. M. E., De Bolle M. F. C., Van Leuven F., Rees S. B., Vanderleyden J., Cammue B. P. A., Broekaert W. F. Analysis of two novel classes of antifungal proteins from radish (Raphanus sativus L.) seeds // J. Biol. Chem.–1992.–267.–P. 5301–5309. 24. Êî âàëü î âà Â. À., Ãóò ². Ò., Ãóò Ð. Ò. Î÷èñ òêà òà õà ðàê òå ðèñ - òè êà äå ôåí çè íó ç êî ðåí³â Pinus sylvestris L. // Ìà òåð³àëè ²Õ Óêð. á³îõ³ì. ç’¿çäó (24–27 æîâ òíÿ 2006 ð., Õàðê³â).– Ñ. 45–46. 25. De Samblanx G. W., Goderis I., Thevissen K., Raemaekers R., Fant F., Borremans F., Acland D. P., Osborn R. W., Patel S., Broekaert W. F. Mutational analysis of plant defensin from radish (Raphanus sativus L.) reveals two adjacent sites important for antifungal activity // J. Biol. Chem.– 1997.–272.– P. 1171–1179. UDC 577.112.083 Re ceived 02.07.07 KOVALYOVA V. A. ET AL. 404