MикроРНК: от фундаментальных исследований до их приложения

МикроРНК – малые, некодирующие белок РНК длиной 20–30 нуклеотидов. В клетках эукариотов микроРНК выполняют роль биорегуляторов экспрессии генов через механизм ингибирования или модуляции процесса трансляции. Цель обзора – проанализировать механизмы биогенеза и функционирования микроРНК, стратегию их...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Біополімери і клітина
Datum:2007
Hauptverfasser: Ширина, Т.В., Бобровская, М.Т., Козлов, Э.А.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут молекулярної біології і генетики НАН України 2007
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/157501
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:MикроРНК: от фундаментальных исследований до их приложения / Т.В. Ширина, М.Т. Бобровская, Э.А. Козлов // Біополімери і клітина. — 2007. — Т. 23, № 6. — С. 467-482. — Бібліогр.: 228 назв. — рос., англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-157501
record_format dspace
spelling Ширина, Т.В.
Бобровская, М.Т.
Козлов, Э.А.
2019-06-20T04:15:01Z
2019-06-20T04:15:01Z
2007
MикроРНК: от фундаментальных исследований до их приложения / Т.В. Ширина, М.Т. Бобровская, Э.А. Козлов // Біополімери і клітина. — 2007. — Т. 23, № 6. — С. 467-482. — Бібліогр.: 228 назв. — рос., англ.
0233-7657
DOI: http://dx.doi.org/10.7124/bc.000781
https://nasplib.isofts.kiev.ua/handle/123456789/157501
577.21:615.01:616-092
МикроРНК – малые, некодирующие белок РНК длиной 20–30 нуклеотидов. В клетках эукариотов микроРНК выполняют роль биорегуляторов экспрессии генов через механизм ингибирования или модуляции процесса трансляции. Цель обзора – проанализировать механизмы биогенеза и функционирования микроРНК, стратегию их открытия, предоставить краткий перечень биологических процессов, в регуляции которых принимают участие микроРНК, а также ознакомить с новейшими публикациями, посвященными причастности микроРНК к различным патологиям (особенно канцерогенезу) и использованию их для маркирования, диагностики, профилактики и терапии раковых болезней человека.
MicroRNAs (miRs) are small non-protein-encoding RNAs of 20–30 nucleotides long. In eukaryotic cells miRs play the role of bioregulators of gene expression through the mechanisms of translation repression/modulation. Here we both familiarize the readers with miRs biogenesis, functioning mechanisms, and strategy of their discovery and present the list of biological processes, regulated by miRs. We also list the publications, dedicated to miRs role in human pathologies (carcinogenesis in particular) and their application for marking, prevention, diagnostics, and therapy of cancer.
МікроРНК – короткі некодуючі РНК довжиною 20–30 нуклеотидів. У клітинах еукаріотів мікроРНК відіграють роль біорегуляторів експресії генів, пригнічуючи або модулюючи процес трансляції. Мета огляду – проаналізувати механізми біогенезу та функціонування мікроРНК, стратегію їхнього відкриття, надати перелік деяких біологічних процесів, у регуляції яких беруть участь мікроРНК, а також ознайомити з новітніми публікаціями, присвяченими причетності мікроРНК до різних патологій (особливо канцерогенезу) і застосуванню їх для маркування, профілактики, діагностики та терапії різних хвороб.
ru
Інститут молекулярної біології і генетики НАН України
Біополімери і клітина
Огляди
MикроРНК: от фундаментальных исследований до их приложения
МікроРНК: від фундаментальних досліджень до практичного застосування
MicroRNA: from fundamental research to their application
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title MикроРНК: от фундаментальных исследований до их приложения
spellingShingle MикроРНК: от фундаментальных исследований до их приложения
Ширина, Т.В.
Бобровская, М.Т.
Козлов, Э.А.
Огляди
title_short MикроРНК: от фундаментальных исследований до их приложения
title_full MикроРНК: от фундаментальных исследований до их приложения
title_fullStr MикроРНК: от фундаментальных исследований до их приложения
title_full_unstemmed MикроРНК: от фундаментальных исследований до их приложения
title_sort mикрорнк: от фундаментальных исследований до их приложения
author Ширина, Т.В.
Бобровская, М.Т.
Козлов, Э.А.
author_facet Ширина, Т.В.
Бобровская, М.Т.
Козлов, Э.А.
topic Огляди
topic_facet Огляди
publishDate 2007
language Russian
container_title Біополімери і клітина
publisher Інститут молекулярної біології і генетики НАН України
format Article
title_alt МікроРНК: від фундаментальних досліджень до практичного застосування
MicroRNA: from fundamental research to their application
description МикроРНК – малые, некодирующие белок РНК длиной 20–30 нуклеотидов. В клетках эукариотов микроРНК выполняют роль биорегуляторов экспрессии генов через механизм ингибирования или модуляции процесса трансляции. Цель обзора – проанализировать механизмы биогенеза и функционирования микроРНК, стратегию их открытия, предоставить краткий перечень биологических процессов, в регуляции которых принимают участие микроРНК, а также ознакомить с новейшими публикациями, посвященными причастности микроРНК к различным патологиям (особенно канцерогенезу) и использованию их для маркирования, диагностики, профилактики и терапии раковых болезней человека. MicroRNAs (miRs) are small non-protein-encoding RNAs of 20–30 nucleotides long. In eukaryotic cells miRs play the role of bioregulators of gene expression through the mechanisms of translation repression/modulation. Here we both familiarize the readers with miRs biogenesis, functioning mechanisms, and strategy of their discovery and present the list of biological processes, regulated by miRs. We also list the publications, dedicated to miRs role in human pathologies (carcinogenesis in particular) and their application for marking, prevention, diagnostics, and therapy of cancer. МікроРНК – короткі некодуючі РНК довжиною 20–30 нуклеотидів. У клітинах еукаріотів мікроРНК відіграють роль біорегуляторів експресії генів, пригнічуючи або модулюючи процес трансляції. Мета огляду – проаналізувати механізми біогенезу та функціонування мікроРНК, стратегію їхнього відкриття, надати перелік деяких біологічних процесів, у регуляції яких беруть участь мікроРНК, а також ознайомити з новітніми публікаціями, присвяченими причетності мікроРНК до різних патологій (особливо канцерогенезу) і застосуванню їх для маркування, профілактики, діагностики та терапії різних хвороб.
issn 0233-7657
url https://nasplib.isofts.kiev.ua/handle/123456789/157501
citation_txt MикроРНК: от фундаментальных исследований до их приложения / Т.В. Ширина, М.Т. Бобровская, Э.А. Козлов // Біополімери і клітина. — 2007. — Т. 23, № 6. — С. 467-482. — Бібліогр.: 228 назв. — рос., англ.
work_keys_str_mv AT širinatv mikrornkotfundamentalʹnyhissledovaniidoihpriloženiâ
AT bobrovskaâmt mikrornkotfundamentalʹnyhissledovaniidoihpriloženiâ
AT kozlovéa mikrornkotfundamentalʹnyhissledovaniidoihpriloženiâ
AT širinatv míkrornkvídfundamentalʹnihdoslídženʹdopraktičnogozastosuvannâ
AT bobrovskaâmt míkrornkvídfundamentalʹnihdoslídženʹdopraktičnogozastosuvannâ
AT kozlovéa míkrornkvídfundamentalʹnihdoslídženʹdopraktičnogozastosuvannâ
AT širinatv micrornafromfundamentalresearchtotheirapplication
AT bobrovskaâmt micrornafromfundamentalresearchtotheirapplication
AT kozlovéa micrornafromfundamentalresearchtotheirapplication
first_indexed 2025-11-24T23:58:07Z
last_indexed 2025-11-24T23:58:07Z
_version_ 1850501261194952704
fulltext REVIEWS MicroRNA: from fun da men tal re search to their ap pli ca tion T. V. Shirina, M. T. Bobrovskaya, E. A. Kozlov Institute of molecular biology and genetics NAS of Ukraine Academicain Zabolotnog str., 150, Kyiv, 03680 Ukraine E.mail: kozlov@imbig. org. ua MicroRNAs (miRs) are small non-pro tein-en cod ing RNAs of 20-30 nu cleo tides long. In eukaryotic cells miRs play the role of bioregulators of gene ex pres sion through the mech a nisms of trans la tion re pres - sion/mod u la tion. Here we both fa mil iar ize the read ers with miRs biogenesis, func tion ing mech a nisms, and strat egy of their dis cov ery and pres ent the list of bi o log i cal pro cesses, reg u lated by miRs. We also list the pub li ca tions, ded i cated to miRs role in hu man pa thol o gies (carcinogenesis in par tic u lar) and their ap pli ca - tion for mark ing, pre ven tion, di ag nos tics, and ther apy of can cer. Key words: microRNA, biogenesis, ex pres sion pro file, bioinformatic, microRNA-pre dic tion, bioregulation, carcinogenesis, ther apy. In tro duc tion. The be gin ning of the cen tury was re - nowned for one of the great est dis cov er ies, which could be com pared with the dis cov ery of dou ble stranded DNA by James Wat son and Fran cis Crick or with the dis cov ery of re verse tran scrip tion by Howard Temin and Da vid Bal ti more. This dis cov ery can be con sid ered to be the rev o lu tion ary one as it not only sup ple ments our ideas on growth reg u la tion and dif fer - en ti a tion of cells and wid ens the ideas on var i ous cell me tab o lism and the pro cesses of de vel op ment of the or gan ism but also helps to per ceive the par a digm of med i cal treat ment of var i ous dis eases, es pe cially can - cer dis eases and dis eases of de vel op ment, based on the afore men tioned knowl edge. This is the dis cov ery of mi nor RNA mol e cules, ca pa ble of in duc ing RNA-in - ter fer ence. Two groups of mi nor in ter fer ing RNA. The two groups dif fer in biogenesis and in the role they play in or gan isms, yet have many com mon fea tures in the mech a nisms of their func tion ing. The class of mi nor RNAs is rep re sented by small non-cod ing RNAs (snRNAs), 20–30 nu cleo tides long. Func tion ing of snRNA re sults in si lenc ing of gene ex pres sion at transcriptional and post-transcriptional lev els due to com ple men tary in ter ac tions as a part of ribonucleoprotein (RNP) effector com plexes with their DNA- (level of tran scrip tion) and RNA- (level of trans - la tion) tar gets [1]. In this pa per we de scribe only the sec ond (from the point of view of chro nol ogy of dis - cov ery) group of snRNAs, i.e. microRNAs, miRNAs, or miRs. How ever, prior to dis cuss ing miRs we need to men - tion the first group of snRNAs – small in ter fer ing RNA or siRNAs. This group is rep re sented by dou - ble-stranded spi ral RNA, 22 and 28–30 nu cleo tides long which are due to oc cur af ter split ting of large dou - ble-stranded RNA by RNAase III endonuclease, also known as Dicer [2, 3]. Ac cord ing to the source of dou - 467 ISSN 0233-7657. Biopolymers and cell. 2007. vol. 23. N 6. Translated from Ukrainian. Ó T. V. SHIRINA, M. T. BOBROVSKAYA, E. A. KOZLOV, 2007 ble-stranded RNA in the cell, siRNAs can be clas si fied into two sub-groups, which are spe cific for dif fer ent bi - o log i cal ef fect and dif fer ent func tions. Un like dou - ble-stranded RNA, which are de liv ered into the cell by vi ruses and transgenes or oc cur af ter ab er rant syn the sis of RNA, “diced” siRNAs of 22 nu cleo tides long func - tion as the mech a nism of cell pro tec tion from non-spe - cific allogenic RNA, and pres ent a sort of im mune re - sponse at the level of RNA [2]. If dou ble-stranded RNA is syn the sised in the cell in the nat u ral way from ge nome re gion, which in cludes centromeres, transposons, telomeres or re peats, “diced” siRNAs of 28–30 nu cleo tides long take an ac tive part in the epigenetic pro cesses, re sult ing in si lenc ing of genes at the level of tran scrip tion [4]. That is about all we wanted to men tion in re gard to the first group of snRNAs – siRNAs – to em pha size the prin ci pal dif fer ences from the sec ond group of small in - ter fer ing RNA – miRs. Dif fer ent as pects of ge nome or gani sa tion, biogenesis, reg u la tion of tran scrip tion, func tion ing of miRNAs and their role in the reg u la tion of dif fer en ti a - tion and cell growth, as well as the de vel op ment of or - gan ism and var i ous cell pro cesses are the sub ject of re - views [5–7]. Hence, the aim of cur rent re view is to turn the at ten tion of mo lec u lar bi ol o gists onto these tiny bioregulators, which, ap par ently, take part in all cell pro cesses. Dis tri bu tion and lo cal isa tion of miRs genes. The prin ci pal dif fer ence of miRs is their endogenic or i gin, i.e. cell genomes con tain miR genes. The lat ter were dis cov ered in al most all rep re sen ta tives of eukaryotes and in large DNA-con tain ing vi ruses (ex cept for RNA-con tain ing hu man im mu no de fi ciency vi rus (HIV)) [8], ge nome of which is in cor po rated into the host ge nome. Usu ally miR genes are lo cal ized in the intergenic re gion of en cod ing chains as sin gle genes or their clus ters [9]. They are lo cated in the intron re gions of en cod ing genes (intronic miRs) [10, 11] and in transposon el e ments [12]. miRs biogenesis. There is hardly any in for ma tion on the ini ti a tion and reg u la tion of tran scrip tion of pri - mary tran script (pri-miR) for miR as well as on the fac - tors, reg u lat ing ex pres sion of miRs. Reg u la tion of miR-155 ex pres sion was shown in Bur kitt’s lym phoma to take place at two lev els: i) level of tran scrip tion, in - volv ing proteinkinase C and nu clear kappa B fac tor and ii) level of pro cess ing via yet un dis cov ered mech a nism [13]. Lee et al. [14] iden ti fied nu mer ous reg u la tory el e - ments, lo cated in 5¢-po si tions to wards miRs genes, known to be sig nif i cant for transcriptional and post-transcriptional reg u la tion of ex pres sion of miRs. Fukao et al. [15] re vealed that miRs are pre dom i nantly con trolled by unique cis-reg u la tory el e ments, which co-de velop with miRs se quences. These data re veal the pos si ble par tic i pa tion of well-char ac ter ized tran scrip - tion fac tors, pro tein-en cod ing genes, in the ex pres sion of miRs genes. miRs along with tran scrip tion fac tors make the reg u la tory net work ing, con trol ling thou sands of genes, pos si bly in clud ing ex pres sion of miRs genes [16]. The lat ter were shown to be co-ex pressed with their mRNA-tar gets. At the same time mammalians were dem on strated to have two classes of cy clic ex pres - sion co-reg u la tion of miRs and their tar gets with pos i - tive and neg a tive feed back [17], which in volves miRs as sta bi liz ing and destabilizing fac tors in the dy nam ics of the gene ex pres sion [18]. Ap par ently, transcriptional reg u la tion of miRs gene ex pres sion is con trolled via some epigenetic mech a nisms [19–21]. The mech a nisms, based on sin gle nu cle o tide poly mor - phism [22–24] and A®I-ed it ing of the pre de ces sors and ma ture miRs [25–29] can be pos si bly in cluded to the list of mech a nisms of post-translational reg u la tion of ex pres sion of miRs genes. In case if miRs genes are lo cated within the intergenic re gion, pri-miRs are tran scribed with RNA-poly mer ase II [30, 31], at the same time, if they are lo cal ized in introns, then the pro duc tion of pri-miR is also sup ple mented by the mech a nism of RNA splic - ing [10, 11]. In some cases miRs are tran scribed by RNA-poly mer ase III. Thus, au thors of [32] dem on - strated that the clus ter of miRs genes, lo cated among Alu-re peats on hu man chro mo some 19, is tran scribed by RNA-poly mer ase III but not RNA-poly mer ase II. It re mains un known whether it is a unique case or a rule for miRs genes, lo cated in ge nome re gions, tran - scribed by RNA-poly mer ase III. Au thors in [33] de ter - mined the ma jor ity of the in ves ti gated miRs genes of nem a tode, hu man, and two plant spe cies to pos sess the same type of pro moter spe cific for pro tein-en cod ing genes (TATA). How ever, a sig nif i cant num ber of 468 SHIRINA T. V., BOBROVSKAYA M. T., KOZLOV E. A. genes are of in def i nite type. The au thors de vel oped a new method of fore see ing the pro mot ers, re mind ing cis-act ing el e ments, for tran scrip tion ini ti a tion. The value and the sec ond ary struc ture of tran scribed pri-miRs may vary sig nif i cantly [31]. Length-wise they may be from 100 to sev eral thou sand nu cleo tides long. There are cases of pri-miRs, spe cific for poly-A-se quences and cap struc ture, i.e. ca pa ble of per - form ing func tions of mRNA [34]. The spec i fic ity of sec ond ary struc ture of pri-miRs is the pres ence of hair-loop struc ture – hair pins – re gard less of their length [35]. In some cases, they may con tain 1–2 hair - pins [36] or sev eral as in the case of clus ter lo cal iza tion of pri-miR genes [9, 37, 38]. The next stage of miR biogenesis is the split ting of pri-miR in the nu cleus by RNAase III, also called Drosha [35]. Scheme of miR biogenesis is pre sented in Fig.1. Drosha chips off the hair pin out of pri-miR – miR pre cur sor, pre-miR. Cer tain rules have to be abided re gard ing the struc ture of pre-miR hair pin as a part of pri-miR for suc cess ful chip ping off by Drosha. Split takes place be tween sev eral (1–5) non-paired bases, then hair pin stem, con tain ing not less than 10 b.p., is split. Hair pin stem may in clude non-paired bases as well. The most suc cess ful split ting oc curs at the pres ence of branchy non-paired chains at the hair pin base. Chip ping off takes place at the base and cap tures 1–2 nu cleo tides of the hair pin stem. The length of pre-miR may usu ally vary (»50–80 nu cleo tides). Hair - pins may in clude non-paired bases of both arms (5¢ and 3¢), form ing sym met ri cal loop, and of one arm only – asym met ri cal loops (up to 10 b.p.). Yet ex cep tions may oc cur. The pres ence of pri-miR hair pins in plants is not con sid ered to be the rule. pre-miR hair pins, if they are pro cessed, vary sig nif i cantly in length (from 60 up to 300 nu cleo tides) and in shape [39, 40]; e.g. pre-miR-169, 196 nu cleo tides long, con tains one asym - met ri cal loop, 44 nu cleo tides long, in each of the stem arms [39]. In most of the cases, ma ture miRs are chipped off dou ble-stranded ex tended pri-miR re gions, which do not nec es sar ily form hair-pin loop struc ture [40]. Later on we will dis cuss some pos si ble rea sons of such ex cep tions. Drosha en zyme is known to func tion in the hu man body with RNA-bind ing pro tein, called Pa sha or DGCR-8 [41] (Fig.1). In this tan dem Pa sha acts as pri-miR bind ing pro tein, while Drosha pro vides nucleolytic ac tiv ity of the com plex. Pa sha pro tein con - sists of 773 amino acid res i dues and con tains N-ter mi - nal do main (1–275), re spon si ble for nu clear lo cal iza - tion, two do mains in C-ter mi nal re gion, re spon si ble for pri-miR bind ing and one do main (692–750) is re spon si - ble for bind ing with Drosha [41]. Au thors of [42] sug - gested the model of rec og ni tion of pri-miR by DGCR-8 pro tein on crys tal lo graphic struc ture of core re gion of 429–720. Crys tal lo graphic struc ture of C-ter mi nal do - main of Dicer, re spon si ble for pro duc tion of miRs, was stud ied by Takeshita et al. [43]. Drosha in mice is rep - re sented by a com plex of two sub units, one of which is DEAD-con tain ing helicase sub unit which rec og nizes pri-miR [44]. The next stage of miR biogenesis is ex port of pre-miR hair pins, chipped off pri-miR, from the nu - cleus to cy to plasm [45–47] (Fig.1), car ried out with the par tic i pa tion of pro tein translocation fac tor Exportin 5. In cy to plasm pre-miR in ter acts with Dicer endonuclease, which cuts dou ble stranded in ter me di ate prod uct miR/miR*, 20–25 nu cleo tides long, out of the hair pin. This prod uct ini ti ates the for ma tion of effector RNA-in duced com plex, re sult ing in si lenc ing of genes, i.e. RISC – RNA in duced si lenc ing com plex, the main pro tein com po nents of which are Dicer, helicase, RNA-bind ing pro tein, and argonaute-pro tein, re spon si - ble for the for ma tion of RISC [5–7, 48–52]. In Drosophila Dicer-pro cess ing en zyme as a part of RISC-com plex func tions in tan dem with RNA-bind ing pro tein Loqs, which re sults in the for ma tion of intramolecular dimer [48]. Au thors de scribe “func - tional anat omy” of Dcr-1/Loqs-com plex and de tails of pre-miR split ting mech a nism. Helicase is known not only to un twist miR/miR*-du plex but also to be a sig nif i cant com po - nent of miR me tab o lism. Along with other com po - nents, helicase takes part in “load ing” of RISC-com - plex [49]. Plants are spe cific for a dif fer ent mech a nism of split ting. They pos sess four Dicer-like en zymes [50]. In Arabidopsis, DCL-1 pro tein and two other pro teins HYL-1 and SE form an intramolecular com plex, which is in cluded into SmD3/SmB-body, lo cal ized in the nu - cleus [51]. The au thors put for ward a sup po si tion that DCL-1/HYL-1/SE-com plex is in volved into miR pro - 469 MicroRNA: FROM FUN DA MEN TAL RE SEARCH TO THEIR AP PLI CA TION duc tion in the nu clear SmD3/SmB-bod ies. These data are con firmed by re sults in [52]. Dic ing (D)-bod ies, as de fined by the au thors of [52], take part in “sym phonic” pro cess ing of pri-miR–pre-miR–miR in nu clei of plant cells. The facts men tioned (the ex is tence of four DCL-en zymes, nu clear lo cal iza tion of D-bod ies) al low sup pos ing that plants are spe cific for the ab sence of in - ter me di ate prod uct of miR-me tab o lism – pre-miR – and the above men tioned ab nor mal hair pins are the dis cov - ered pri-miRs. Helicase in RISC-com plex or in D-bod ies un twists miR/miR*, pas sen ger miR* chain is elim i nated, and RISC re mains with com ple men tary chain of 20–25 nu - cleo tides long, i.e. ma ture miR. Ma ture miR may be pro cessed from ei ther 5¢- or 3¢-arm of pre-miR, or from both arms. The lat ter fact is sup posed to de pend on ther mo dy namic sta bil ity of 5¢- or 3¢-arms of pre-miR. The cells usu ally choose the least sta ble miR and de - stroy the other one. Nev er the less, Ro et al. [53] dem on - strated that in some tis sues both chains may be ac cu mu - lated as paired miRs un til they are not sub jected to the se lec tion in other tis sues. Both miRs are ca pa ble of sup press ing ex pres sion of their genes in such tis sues. Mam ma lian miRs may be im ported back to the nu cleus in some cases. Thus, au thors of [54] re vealed that spe cific miRs some times con tain ad di tional hexanucleotide el e ment in 5¢-ter mi nal se quence, which de ter mines their subcellular lo cal iza tion. The same au thors dem on - strated that hav ing joined miR-296, the men tioned ter - mi nal mo tif con trols its nu clear im port. The ac cu mu la - tion of ma ture miR in the nu cleus was also shown in [55], where the au thors de fined that rat miR-206 is as - so ci ated with form ing ri bo somes, as well as with 28S rRNAs of func tion ing ri bo somes in cy to plasm. This is a short re view of the mech a nism of miR gene ex pres - sion. We may also sup pose that plant miRs, formed in the nu cleus, are ex ported into cy to plasm. Mech a nism of miRs func tion ing. How does the ma - ture miR func tion? The model of miR func tion ing is pre sented in Fig.2. Hav ing re mained in RISC-com plex miR be comes a “guide” for miRISC-com plex. It guides effector RNP-com plex to the tar get, which is pre sented by mRNA and where ma ture miR finds its com ple men - tary re gion. Due to miR complementarity with RNA-tar get the com plex is re tained on mRNA, in hib it - ing the pro cess of trans la tion [45, 46]. Long et al. [56] re vealed the in flu ence of sec ond ary struc ture of mRNA-tar get on rec og ni tion of its miRs. They also sup posed the ex is tence of two-step re ac tion of hy brid - iza tion of miR and mRNA. A®I-ed it ing of miRs and their tar gets in flu ences the rep er toire of mRNA-tar gets for miRs and re dis tri bu tion of tar gets [26–29]. The mech a nism of in hi bi tion is of two sides and is known to de pend on the de gree of miR complementarity to its tar - get. If miR is com ple men tary in its 5¢- and 3¢-terminal se quences, 5–7 nu cleo tides long, and is not com ple - men tary in the cen ter (5–7 nu cleo tides), form ing a ledge, then the com plex is placed on 3¢-un trans lated re - gion (3¢ UTR) of mRNA. In this case the pro cess of trans la tion is in hib ited. The se lec tion of tar gets is in flu - enced by some specificities of 3¢ UTR [57–59]. It was shown that suc cess ful in hi bi tion is achieved with 5¢ miR end, while 3¢-end vari abil ity is pos si ble [60–62]. There may be sev eral bind ing cen ters on 3¢ UTR. For in stance, mRNA lin-14, en cod ing nu clear pro tein, nec - es sary for tran si tion of Caenorhabditis elegans larva 470 SHIRINA T. V., BOBROVSKAYA M. T., KOZLOV E. A. Fig. 1. Scheme of miR biogenesis. See text for de tails. from age 1 to age 2, is known to con tain seven bind ing cen ters with miR-lin4 [63]. The in ves ti ga tion of the mech a nisms of in hi bi tion has been com menced only re - cently [64] and it is far from giv ing clear re sults. There are sev eral mech a nisms, dif fer ent in fine de tails of mo - lec u lar in ter ac tion of RNA and pro tein com po nents – the par tic i pants of this com pli cated pro cess [47, 65]. We will not take time to de scribe the de tails but will name only some stages of this pro cess. Re pres sion is known to re quire cap-struc ture and poly-A-se quence [66-69], and to oc cur af ter trans la tion ini ti a tion [70]. Ev i dent is the fact that bind ing of miRISC with mRNA-tar get takes place in poly somes. Thus, ex po - nen tially grow ing HeLa cells showed the ma jor ity of three miRs to be as so ci ated with ac tively trans lated mRNA, while hu man miR-let7a blocks pro tein syn the - sis on ac tively trans lat ing lin-41 mRNA poly somes, as - sist ing in ac cu mu la tion of grow ing polypeptides [71, 72]. Poly somes were pre cip i tated in saccharose con - cen tra tion gra di ent to gether with miR-let-7a and Ago-pro tein. Sup pos edly, miRISC blocks pro tein syn - the sis, con trib ut ing to fast de scent of ri bo somes with grow ing polypeptide chains dur ing trans la tion elon ga - tion [47, 65]. The des tiny of the lat ter re mains un cer - tain, yet some sup po si tions are pre sented in [47, 65]. Later on it has been de ter mined that in hib ited mRNA along with miRISC is as so ci ated with P-bod ies (Fig.2) [45–47]. The au thors of [73] showed that re al iza tion of mRNA out of poly somes is in suf fi cient for the ini ti a - tion of P-bod ies as sem bly – re leased mRNA should take part in in hi bi tion of me tab o lism, ini ti ated by miR. The au thors made the con clu sion that P-bod ies are not oblig a tory for func tion ing, but are the con se quences of me tab o lism of si lenc ing of genes with the par tic i pa tion of miR. P-bod ies con tain high con cen tra tions of en - zymes and fac tors, nec es sary for re pres sion of trans la - tion or mRNA turn over. In this sit u a tion two vari ants are pos si ble: i) miRISC in ter acts with decapping pro - teins and trans la tion ini ti a tion fac tor 4E, at the same time as sist ing in the in hi bi tion and split ting of mRNA; ii) mRNA in ter acts with helicase pro tein p54, oligomerisation of com plex p54–mRNA takes place and mRNA is pre served till better times. When nec es - sary, this pre served mRNA may en ter the trans la tion cy cle again [45, 74]. How ever, it re mains un known how the cell se lects the way of re al iza tion. Be sides, this scheme was de ter mined for miR-let7, which is com - monly known to split mRNA-tar gets, re gard less of its in com plete complementarity (poly-A-se quence is chipped off) [47, 65, 75]. This is the first supposable mech a nism of in hi bi tion of trans la tion with miR, which is based on in com plete complementarity of miR and mRNA tar get, as a part of miRISC-effector com plex, which en gages miR “guid - ing” role, and effector pro tein p54 de ter mines whether RNA should be split or pre served for fur ther re peated trans la tion [45]. The sec ond mech a nism of in hi bi tion of miR trans - la tion in plants is the cut ting of mRNA-tar get ac cord ing to siRNA mech a nism [39, 76, 77]. Sim i lar mech a nism was shown on one of miRs of BART2 of Ep stein-Barr vi rus (EBV) [78]; it is per formed in the cases when miR is com pletely com ple men tary to its tar get. The split ting takes place via the cen ters of com ple men tary re gions. It is ob vi ous that the se lec tion of mech a nism of in hi bi tion de pends on the complementarity of the cen tral re gion of 471 MicroRNA: FROM FUN DA MEN TAL RE SEARCH TO THEIR AP PLI CA TION Fig. 2. The model of miR func tion ing. See text for de tails. miR ~7 nu cleo tides long. In ter est ingly, in some cases the split ting, ini ti ated by miR, re sults in the for ma tion of siRNA out of mRNA split ting prod ucts [40, 76, 77]. Some times 5¢-prod uct of mRNA split ting does not synthesize siRNA. Some sci en tists be lieve that these unsplit 5¢-prod ucts may be func tion ally nec es sary for plants. It is sup posed that split ting of mRNA, re sult ing in siRNA for ma tion, takes place out side of P-bod ies. The data of the type and place of miR split ting are rather con tro ver sial. There are some works that claim that split ting in some points takes place in endonuclease con tain ing P-bod ies [79]. How ever, it con tra dicts the data, ob tained on miR-166 in Arabidopsis, the tar get for which is mRNA of PHV gene [77]. This work dem on - strates that miR-166, com pletely com ple men tary to its tar get, as sists in split ting of mRNA, 656 nu cleo tides long, and the ac cu mu la tion of 5¢-ter mi nal prod uct of split ting, 500 nu cleo tides long. Dicer of RISC-com - plex, ini ti ated by miR-166, acts as mul ti ple-use en - zyme, as one com plex splits ~30 tar get mol e cules. This mech a nism is un likely to be the same if the com plete split ting took place in P-bod ies with endonuclease as - sis tance. It is the most likely that the split in one point takes place in P-bod ies ac cord ing to the sec ond type, with the ac cu mu la tion of 5¢-half of mRNA, as it has been shown for let-7 [45]. Up to this mo ment we re viewed the works, prov ing down-reg u la tion of trans la tion in case of miR bind ing to 3¢-UTR mRNA (mam mals, in ver te brates) or to the en cod ing mRNA re gion (plants). How ever, miRs may also up-reg u late mRNA, mod u lat ing the pro cess of trans la tion [80–82]. miRs can mod u late bind ing cen - ters for pro teins, in ter act ing with mRNA [80, 82]. It is sup posed that bind ing of one or more miR to mRNA may re sult in conformational changes in mRNA, and con se quently, to re veal ing or mask ing of ad di tional reg u la tory el e ments on mRNA. This may oc cur in case of lo ca tion of miR bind ing cen tres within 5¢-non-cod - ing re gion of mRNA-tar get. Up-reg u la tion of ex pres - sion of hep a ti tis vi rus type C was dem on strated dur ing the in ter ac tion of miR-122, spe cific for host liver, with 5¢-re gion of vi ral RNA [81]. Two miRs, interacting with 5¢-re gion of their mRNA-tar gets, were dis cov ered in plants (Arabidopsis) [83]. Ev i dently, mod u la tion of trans la tion pro cess is per formed when miR is bound to 3¢-UTR mRNA and is ac cu mu lated in P-bod ies for re - cur rent trans la tion, which was de monstrated for hu man let-7 miR [45]. On the ba sis of re vealed mech a nism of miR func - tion ing a def i nite con clu sion can be made that bi o log i - cal ef fect of miR de pends on pro teins, en coded in their mRNA-tar gets, as well as on the pro cesses these pro - teins par tic i pate in. But be fore pro ceed ing to that we need to men tion the meth ods of dis cov ery and iden ti fi - ca tion of miR. The strat egy of dis cov ery and in ves ti ga tion of miRs. As of to day some strat e gies of dis cov er ing and in ves ti - gat ing in di vid ual miR have al ready been de vel oped, and some are still be ing elab o rated, mainly in clud ing two ba sic ap proaches, namely bio chem i cal and bioinformatical [84, 85]. Bio chem i cal ap proach uses to tal RNA, ex tracted from tis sues, di vided by ei ther gel-fil tra tion or elec tro pho re sis in 15% polyacrylamide gel, con tain ing so dium dodecyl sul fate and 7M urea, in or der to iso late and to iden tify miR. The zone of low-mo lec u lar RNA (20–30 nu cleo tides) is mod i fied and am pli fied with sub se quent clon ing and se quenc ing. The meth ods de vel oped al low iden ti fy ing miRs, dif fer - ent in one nu cle o tide, in 25 pmoles [86]. Thus, this is the way in di vid ual miRs are iso lated and num bered. Be sides, there is one work on iso lat ing a spe cific 15S-com plex of miR from RNP, con tain ing 40 in di - vid ual miRs, from HeLa cells [87]. Some meth ods de - vel oped are aimed at the iden ti fi ca tion of miRS ex - pres sion pro files [88, 89], i.e. iden ti fi ca tion of time of ap pear ance, syn the sis, and elim i na tion of miRs in the or gans and tis sues dur ing carcinogenesis. Wang et al. [88] de vel oped ac cu rate and sen si tive method of miRs pro fil ing, which al lows dis crim i nat ing RNA in the cell de gree- and se quence-wise and de ter min ing in di vid - ual miRs in tis sues, held by for ma lin and cov ered with par af fin. Work [90] can be an ex am ple of de scrip tion of ex pres sion pro files of 23 miRs in carcinogenesis of Drosophila at the em bry onic stages, and lar vae of three dif fer ent age groups i.e. prepupal, pu pal, and adult fe male. This work dem on strates that some miRs are syn the sized con sti tu tively dur ing carcinogenesis (miR-1, miR-8), oth ers at the stage of em bryo only (miR-2, miR-3), and some – miR-34 – at the stage of larva, and are syn the sized in ten sively in adult spec i - men, whereas miR-125 and let-7 – only at the stages of pupa. 472 SHIRINA T. V., BOBROVSKAYA M. T., KOZLOV E. A. Let us have a look at the bioinformatical ap proach to in ves ti ga tion of miRs. Com puter pro grams are be - ing de vel oped to pre dict the pres ence of hair pin-loop struc tures (pre-miR) and ma ture miRs as parts of these hair pins [91–94], as well as the pres ence of mRNA tar - gets for miR [61, 85, 95–102]. The pre dic tion of pre-miR and ma ture miR hair pins is based on one cri - te rion: can di dates for pre-miR should pos sess spe cific sec ond ary struc ture of hair pin-loop shape, 60–100 nu - cleo tides long, with sev eral sym met ri cal or asym met - ri cal “bub bles” (sev eral un paired bases). Mfold com - puter pro gram is the most wide spread [91]. There is also RNA fold-L-100 pro gram [92], which is ca pa ble of dif fer en ti at ing real hair pins from pseudo ones among nu mer ous pre-miR can di dates with free fold - ing en ergy >23.00 ccal/mol. To pre dict the pres ence of ma ture miR among pre-miR can di dates there some com puter pro grams like miRSeeker and miRScan, which se lect hair pins of 100 nu cleo tides long and to tal rat ing of >10. miRSeeker [93] and miRScan [94] are based on the cri te rion of con ser va tism of adult miRs, thus they se lect can di dates af ter oblig a tory com par i - son of two re lated hair pins. This is main dis ad van tage of the men tioned com puter pro grams and thus, the rea - son of their lim ited ap pli ca tion, es pe cially in the in - ves ti ga tion on miRs, en coded in the ge nome of vi - ruses. Bio chem i cal ap proach con firmed that these com puter pro grams do not iden tify many real miRs, they se lect the most prob a ble ones, and then “real” hair pin-can di dates, con tain ing ma ture miRs. How - ever, pri-, pre-, and ma ture miRs, pre dicted us ing this method, re quire ad di tional con fir ma tion of the fact that the pre cur sors are the sub strates for pro cess ing en - zymes (Drosha, Dicer) [103]. Au thors con sider miRs, suc cess ful in pass ing this sort of se lec tion, can be named the real miRs and un suc cess ful ones – pre cur - sors. Bioinformatical in ves ti ga tion is usu ally con - firmed by bio chem i cal one (pro files of miRs ex pres - sion, iso la tion of in di vid ual miRs and their se quenc - ing) and visa versa. Par tic i pa tion of miRs in cell pro cess reg u la tion. What are the re sults ob tained for the last five years since the dis cov ery of miRs in 2001 [104]? First of all, all eukaryotic genomes in ves ti gated up to date con tain miRs genes. The num ber of dif fer ent miRs in dif fer ent or gan isms is tens and hun dreds in one or gan ism. E.g. the num ber of miRs genes in hu man ge - nome is sup posed to ex ceed 1 000 and may even reach 20 000, which is over 3% of en cod ing ge nome ca pac ity, they may also con trol 30+% of genes [5–7, 105, 106]. Even such small size-wise genomes as genomes of vi - ruses con tain up to sev eral tens of miRs [8, 107, 108]: EBV – 32 miRs [8]; rhe sus lymphocryptovirus – 22 miRs; Kaposi sar coma as so ci ated vi rus – 17 miRs; hu - man cytomegalovirus – 14 miRs; mouse gamma her pes vi rus – 10 miRs [8]; hu man im mu no de fi ciency vi rus – 10 miRs [107]; Marek’s dis ease vi rus – 8 miRs [108]; sim ian SV40 – 8 miRs; her pes sim plest vi rus – 1 miR [8]. At the same time one miR may have tens and hun - dreds of dif fer ent tar gets [5–7, 109]. Dif fer ent tran - scrip tion fac tors and many other pro tein-fac tors pre vail among miR tar gets. Pro tein syn the sis is reg u lated in di - rectly via the pro cesses of tran scrip tion – down-reg u la - tion (sup pres sion of syn the sis) and up-reg u la tion (res - to ra tion of syn the sis). How ever, miRs are ca pa ble of not only sup press ing trans la tion (down-reg u la tion) but also re stor ing it (up-reg u la tion) [81, 82, 110]. Due to the ef fect on the pro cess of tran scrip tion, miRs act as real reg u la tors of nu mer ous pro cesses. Tak ing into ac count the fact that pro files of miRs ex - pres sion are spe cific to var i ous tis sues, or gans, and stages of carcinogenesis, it is clear why miRs are in - volved into con trol and reg u la tion of pro cesses of de - vel op ment, start ing from embryogenesis [111–115] and up to adult or gan ism [116–118], pro cesses of dif - fer en ti a tion [119–121] and cell growth [122–124], pro cesses of tis sue for ma tion [111, 119, 125] and of sep a rate or gans [115, 116, 118, 125–127]. miRs con - trol self-iden ti fi ca tion and dif fer en ti a tion of stem cells [113–115, 128], pro cesses of pro lif er a tion and apoptosis [121, 129–134], they take part in the sig nal - ing sys tems of cells [135], in the reg u la tion of en do - crine [119, 136] and ner vous [5, 119, 137–141] sys - tems, they func tion in hematopoiesis [5, 119, 120, 142–144], spermatogenesis [145], immunogenesis [146–151]. miRs pos si bly take place in al ter na tive splic ing [152] and to gether with siRNAs in epigenetic pro cesses [153–156]. They are also in volved into the me tab o lism of low-mo lec u lar com pounds [157–161] (amino ac ids [158], lipids [159], glu cose [160], phos - phates [161]) and in the reg u la tion of cell os motic pressure [162]. miRs were shown to par tic i pate in the 473 MicroRNA: FROM FUN DA MEN TAL RE SEARCH TO THEIR AP PLI CA TION reg u la tion of pro tein-pro tein in ter ac tion net work ing in hu mans [163]. miRs play the sig nif i cant role in vi rus-cell in ter ac - tions [8]. Gen er ally these are miRs, en coded by large DNA-con tain ing vi ruses, in te grated into host ge nome, and retro virus es. Yet this is a whole dif fer ent topic, which re quires spe cial at ten tion. miRs and dis eases. Fun da men tal in ves ti ga tion of biogenesis and func tion ing of miRs at tract spe cial at - ten tion due to their in volve ment in var i ous pa thol o gies [105, 121, 131, 155, 164–170], in flam ma tory pro cesses [171] and stresses [167, 169]. Now a days the meth od ol - ogy of study ing the ex pres sion pro files of cell miRNAs in norm and pa thol o gies is in prog ress [104, 106, 121, 131, 172–180]. There also oc cur some pa pers on the role of miRNA as a tool in the man age ment of em bry - onic de vel op ment and clas si fi ca tion of hu man tu mours [121, 174]. On the ba sis of these works the sup po si tion can be put for ward that pro grams of de vel op ment in all in ves ti gated or gan isms rep re sent spe cific ex am ples of miRNA ex pres sion pro files and dis or ders in these pro - files cor re late with dif fer ent pa thol o gies, in par tic u lar, vi rus in fec tions [181] and carcinogenesis [106, 132–134, 173–179, 182–192]. Cur rently it has been shown that neoplasias are char ac ter ized by spe cif i cally changed pro file of miRNA ex pres sion [121, 173–179, 189, 190, 193–198]. Not only changes in ex pres sion pro files but also the oc cur rence of spe cific miRs have been de tected in var i ous tu mours [190, 193, 199–203]. In ter est ingly, both onco genes and tu mour suppressors may be con sid ered as miRs [131, 176, 177, 185, 199–212]. RNAi-ther apy. To tally new strat egy of mark ing, di - ag nos tics, pre ven tion, and treat ment of dis eases is be - ing de vel oped due to the study of new miRs and their ex pres sion pro files [106, 121, 169, 175–180, 184–187, 203–205, 213–218] which in volves the ap pli ca tion of ge net i cally and chem i cally mod i fied miRs (antogomirs) along with siRNAs [191, 219–224]. The main task for the new gen er a tion of med i cal prep a ra - tions for dif fer ent types of pa thol o gies is the de ter mi na - tion of op ti mal mod i fi ca tions of chem i cally syn the - sized sense and antisense oligonucleotides. De liv ery of oligonucleotides, vec tor se lec tion, chem i cal mod i fi ca - tions for pro tec tion from nu cleases, elim i na tion of side ef fects (in ter feron stim u la tion) – this is the list of the most im por tant prob lems, wait ing for their so lu tion on the way to the in tro duc tion of fun da men tal knowl edge on miRs into med i cal prac tice. In vivo tox ic ity of short hair pin RNA, con di tioned by the sat u ra tion of me tab o - lism of endogenic miRs, may hin der the im ple men ta - tion [225–226]. Re search ers in quire whether these data would limit ther a peu tic ap pli ca tion of short hair pin RNA. John et al. try to an swer this ques tion [227]. These au thors re vealed that the si lenc ing of tar get genes does not re sult in sig nif i cant changes in lev els of miR-122, mir-16, and let-7a, ex pressed in cells of rats and ham - sters, via the ap pli ca tion of syn thetic siRNA, aimed at two hepatocyte-spe cific genes (apoliprotein B and fac - tor VII). Sci en tists con cluded that the ap pli ca tion of syn thetic miRs should not re sult in the dis or ders in the or gan ism and thus, antogomirs may be con sid ered “safe and ef fec tive si lenc ing tool of gene tran scripts”. Stat - ing on the abovementioned we may sup pose that syn - thetic mi nor RNA can be ap plied as med i cal prep a ra - tions. The key role in di ag nos tics and drug dis cov ery within the new par a digm of de vel op ment of per son al - ized med i cine, based on RNA-in ter fer ence with miRs and siRNAs, be longs to miRs [228]. Al though not even one sin gle com mer cial med i cal prep a ra tion has been de vel oped and only some are be ing clin i cally tested, fu - ture mar ket of RNA-in ter fer ence-based drugs is es ti - mated to be 3.5·109 USD in 2010 and up to 10·1010 USD in 2015 [228]. Ò. Â. Øèðèíà, Ì. Ò. Áîáðîâñêàÿ, Ý. À. Êîçëîâ MèêðîÐÍÊ: îò ôóíäàìåíòàëüíûõ èññëåäîâàíèé äî èõ ïðèëîæåíèÿ ÌèêðîÐÍÊ – ìàëûå, íåêîäèðóþùèå áåëîê ÐÍÊ äëèíîé 20–30 íóêëåîòèäîâ.  êëåòêàõ ýóêàðèîòîâ ìèêðîÐÍÊ âûïîëíÿþò ðîëü áèîðåãóëÿòîðîâ ýêñïðåññèè ãåíîâ ÷åðåç ìåõàíèçì èíãèáèðîâàíèÿ èëè ìîäóëÿöèè ïðîöåññà òðàíñëÿöèè. Öåëü îáçîðà – ïðîàíàëèçèðîâàòü ìåõàíèçìû áèîãåíåçà è ôóíêöèîíèðîâàíèÿ ìèêðîÐÍÊ, ñòðàòåãèþ èõ îòêðûòèÿ, ïðåäîñòàâèòü êðàòêèé ïåðå÷åíü áèîëîãè÷åñêèõ ïðîöåññîâ, â ðåãóëÿöèè êîòîðûõ ïðèíèìàþò ó÷àñòèå ìèêðîÐÍÊ, à òàêæå îçíàêîìèòü ñ íîâåéøèìè ïóáëèêàöèÿìè, ïîñâÿùåííûìè ïðè÷àñòíîñòè ìèêðîÐÍÊ ê ðàçëè÷íûì ïàòîëîãèÿì (îñîáåííî êàíöåðîãåíåçó) è èñïîëüçîâàíèþ èõ äëÿ ìàðêèðîâàíèÿ, äèàãíîñòèêè, ïðîôèëàêòèêè è òåðàïèè ðàêîâûõ áîëåçíåé ÷åëîâåêà. Êëþ÷åâûå ñëîâà: ìèêðîÐÍÊ, áèîãåíåç, ôóíêöèÿ, ïðîôèëè ýêñïðåññèè, áèîèíôîðìàòè÷åñêîå ïðåäñêàçàíèå, áèîðåãóëÿöèÿ, êàíöåðîãåíåç, òåðàïèÿ. 474 SHIRINA T. V., BOBROVSKAYA M. T., KOZLOV E. A. REFERENCES 1. Pasquinelli A. E. Demistifying small RNA pathways // Develop. Cell.–2006.–10, N 4.–Ð. 419–424. 2. Plasterk R. H. A. RNA silencing: the genomes immune system // Sciencå.–2002.–296.–Ð. 1263–1264. 3. Zamore R. D. Ancient pathways programmed by small RNAs // Science.–2002.–296.–P. 1265–1269. 4. Matzke M. A., Brichler J. A. RNA-mediated pathways in nucleuse // Nat. Rev.–2005.–6, N 1.–Ð. 24–35. 5. Zhao Y., Srivastava D. A developmental view of microRNA function // Trends Biochem. Sci.–2007.–32, N 4.–P. 189– 197. 6. Zhang B., Wang Q., Pan X. MicroRNAs and their regulatory roles in animals and plants // J. Cell Physiol.–2007.–210, N 2.–P. 279–289. 7. Wang Y., Stricker H. M., Gou D., Liu L. MicroRNA: past and present // Front Biosci.–2007.–12.–P. 2316–2329. 8. Scaria V., Hariharan M., Maiti S., Pillai B., Brahmachari S. K. Host-virus interaction: a role for micro RNAs // Retrovirology.–2006.–3.–Ð. 68–76. 9. Yu J., Wang F., Yang G. H., Wang F. L,, Ma Y. N., Du L. W., Zhang J. W. Human microRNA cluster: genomic organization and expression profile in leukemia cell lines // Biochem. and Biophys. Res. Communs.–2006.–349, N 1.– P. 59–68. 10. Lis C., Tang P., Lin W. C. Intronic microRNA: discovery and biological implications // DNA Cell Biol.–2007.–26, N 2.– P. 195–207. 11. Kim Y.-K., Kim V. N. Processing of intronic microRNA // EMBO J.–2007.–26.–P. 775–783. 12. Piriyapongsa J., Marino-Ramirez L., Jordan J. K. Origin and evolution of human microRNAs from transposable elements // Genetics.–2007.–176, N 2.–P. 1323–1327. 13. Kueiver J., Van den Berg A., de Long D., Blokzijl T., Harms G., Bauvman E., Jacobs S., Poppewa S., Kroesen B. J. Regulation of pri-microRNA BIC translation and processing in Burkitt lymphoma // Oncogenå.–2007.–26, N 26.–Ð. 3769– 3776. 14. Lee J., Li Z., Brower-Sinning R., John B. Regulatory circuit of human microRNA biogenesis // PLoS Comput. Biol.–2007.– 3, N 4.–å67. 15. Fukao T., Fukada Y., Kiga K., Sharif J., Hino K., Enomoto Y., Kawamura A., Nakamura K., Takeuchi T., Tanabe M. An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling // Cell.–2007.–129, N 3.–Ð. 617–631. 16. Shalgi R., Lieber D., Oren M., Dilpel Y. Global and local architecture of the mammalian microRNA-transcription factor regulatory network // PLos Comput. Biol.–2007.– 3, N 7.–e131. 17. Tsang J., Zhu S., van Oudenaarden A. MicroRNA mediated feedback and feedforward loops are recurrent network motifs // Mol. Cell.–2007.–26, N 5.–Ð. 753–767. 18. Xie L. R., Yang H. T., Liu W. C., Hwang M. J. The role of microRNA in the delayed negative feedback regulation of gene expression // Biochem. and Biophys. Res. Communs.–2007.–358, N 3. Ð. 722–726. 19. Chuang J. C., Jones P. A. Epigenetics and microRNAs // Pediatr. Res.–2007.–61, N 5, Pt 2.–P. 24R–29R. 20. Weber B., Streseman C., Brueckner B., Lyko F. Methylation of human microRNAs genes in normal and neoplastic cells // Cell Cycle.–2007.–6, N 9.–Ð. 1001–1005. 21. Han L., Witmer P. D., Casey E., Valle D., Sukumar S. DNA methylation microRNA expression // Cancer Biol. Ther.–2007.–6, N 8.–[Epub ]. 22. Duan R., Pak C., Jin P. Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA // Hum. Mol. Genet.–2007.–16, N 9.–P. 1124– 1131. 23. Sethupathy P., Borel C., Gagnebin M., Grant G. R., Deutsch S., Elton T. S., Hatzigeorgiou A. G., Antonarakis S. E. Human microRNA-155 on chromosome-21 differentially interects with its polymorphic target in the AGTRL 3' untranslated region: mechanism for fuctional single-nucleotide polymorphisms related to phenotypes // Am. J. Hum. Genet.– 2007–81, N 12.–Ð. 405–413. 24. Barnes M. R., Deharo S., Grocock R. Y., Brown J. R., Sanseau P. The microRNA target paradigm: a fundamental and polymorphic control layer of cellular expression // Exp. Opin. Biol. Ther.–2007.–7, N 9.–P. 1387–1399. 25. Amariglio N., Rechavi G. A- to -I RNA editing: a new regulatory mechanism of global gene expression // Biol. Cells Mol. Dis.–2007.–39, N 2.–Ð. 151–155. 26. Das A. K., Carmichall G. G. ADAR edition wobbles the microRNA world // ACS Chem. Biol.–2007.–2, N 4.– Ð. 217–230. 27. Habig J. W., Dale T., Bass B. L. MiRNA-editing – we should have inosine this coming // Mol. Cell.–2007.–25, N 6.– Ð. 792–793. 28. Kawahara Y., Zinshteynt B., Sethupathy P., Likasa H., Hatzigeorgiou A. G., Nishikura K. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs // Science.–2007.–3515, N 5815.–Ð. 1137–1140. 29. Liang H., Landweber L. F. Hypothesis: RNA editing of microRNA target sites in humans? // RNA.–2007.–13, N 4.–Ð. 463–467. 30. Lee J., Kim M., Han J., Yeom K.-H., Lee S., Back S. H., Kim V. N. ÌicroRNA genes are transcribed by RNA polymerase II // EMBO J.–2004.–23.–P. 4051–4060. 31. Bartel D. P. MicroRNAs: genomics biogenesis, mechanism and function // Cell.–2004.–116.–Ð. 281–297. 32. Borchert G. M., Lanier W., Davidson B. L. RNA polymerase III transcribes human microRNAs // Nat. Struct. Mol. Biol.–2006.–13, N 12.–Ð. 1097–1101. 33. Zhou X., Ruan J., Wang G., Zhang W. Characterization and identification of microRNA core promoters in four model species // PLoS Comput. Biol.–2007.–3, N 3.–å37. 34. Cai X., Hagedorn C. H., Cullen B. R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNA // RNA.–2004.–10.–Ð. 1957–1966. 35. Zeng J., Cullen B. R. Efficient ðrocessing of primary microRNA hairpins by Drosha reuires flanking nonstructured RNA sequence // J. Biol. Chem.–2005.–280, N 30.–Ð. 27595–27603. 36. Bashirullah A., Pasquinelli A. E., Kiger A. A., Perriman N., Ruvkun G., Tummel C. S. Coordinate regulation of small temporal RNAs at the onset of Drosophila metamorphosis // Develop. Biol.–2003.–259.–Ð. 1–8. 37. Lau N. C., Lim L. P., Weinstein E. G., Bartel D. P. An abundant class of tiny RNAs with probably regulatory roles an Caenorabditis elegans // Science.–2001.–294, N 5543.– Ð. 858–862. 38. Mineno J., Okamoto S., Ando T., Sato M., Chong H., Izu H., Takayama M., Asada K. The expression profile of microRNAs in mouse embryos // Nucl. Acids Res.–2006.–34, N 6.–Ð. 1763–1771. 475 MicroRNA: FROM FUN DA MEN TAL RE SEARCH TO THEIR AP PLI CA TION 39. Reinhart B. J., Weinstein E. G., Rhoades M. W., Bartel B. MicroRNAs in plants // Genes Develop.–2002.–16, N 13.– Ð. 1616–1626. 40. Qui C. X., Xie F. L., Zhu Y. Y., Guo K., Huang S. O., Nie L., Yang Z. M. Computational identification of microRNAs and their targets in Gossypium hirsutum expressed sequence tags // Gene.–2007.–395, N 1–2.–Ð. 49–61. 41. Jeom K. H., Lee J., Han J., Suh M. R., Kim V. N. Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing // Nucl. Acids Res.–2006.–34, N 34.–Ð. 4622–4629. 42. Sohn S. Y., Bawe W. J., Kim J. J., Yeom K. H., Kim V. N., Cho Y. Cristal structure of human DGCR8 core // Nat. Struct. Mol. Biol.–2007.–14, N 9.–Ð. 847–853. 43. Takeshita D., Zenno S., Lee W. C., Nagata K., Saigo K., Tanokura M. Homodimeric structure and double-stranded RNA cleavage activity of the C-terminal RNAse III domain of human Dicer // J. Mol. Biol.–2007, Sep. 8 [Epub.]. 44. Fukuda T., Yamagata K., Fujiyama S., Matsumoto T., Koshida I., Yoshimura K., Mihara M., Naitou E., Endoh H., Nacamura T., Akimoto C., Yamomoto Y., Katagiri T., Foulds C., Takezawa S., Kitagawa H., Takeyama K., O’Malley B. W., Kato S. DAED-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNA // Nat. Cell Biol.–2007.–9, N 5.–Ð. 604–611. 45. Ñhu Y., Rana T. M. Traslation repression in human cells by microRNA-induced gene silencing requires RCK/p54 // PLoS Biol.–2006.–4, N 7.–e210. 46. Jackson J., Standart N. How do microRNA regulate gene expression? // Sci. STKE.–2007.–N 367.–P. re 1. 47. Pillai R. S., Bhattacharyya S. N., Filipowicz W. Repression of protein synthesis by miRNAs: how many mechanisms? // Trend Cell Biol.–2007.–17, N 3.–P. 118–126. 48. Ye X., Paroo Z., Liu O. Functional anatomy of the Drosophila microRNA-generating enzyme // J. Biol. Chem.–2007.–282, N 39.–P. 28373–28378. 49. Salzman D. W., Shubert-Coleman J., Furneaux H. P68RNA helicase unwinds the human let-7 microRNA precursor duplex and is required for let-7 directed silencing of gene expression // J. Biol. Chem.–2007.–282, N 40.– P. 32773–32779. 50. Blevins T., Rajeswaran R., Shivaprasad P. V., Beknazariants D., Si-Ammour A., Park H.-S., Vazquer F., Robertson D., Meins F. Jr., Hohn T., Pooggin M. M. Four plant Dicer mediate viral small RNA biogenesis and DNA virus induced silencing // Nucl. Acids Res.–2006.–34, N 21.–Ð. 6233– 6246. 51. Fujioka Y., Utsumi M., Ohba Y., Watanaba Y. Location of a possible miRNA processing site in SmD3/SmB nuclear bodies in Arabidopsis // Plant. Cell Physiol.–2007.–48, N 9.–P. 1243–1253. 52. Fang Y., Spector D. L. Identification of nuclear Dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants // Curr. Biol.–2007.–17, N 9.–P. 818–823. 53. Ro S., Park C., Young D., Sanders K. M., Yan W. Tissue-dependent paired expression of miRNAs // Nucl. Acids Res.–2007.–35, N 17.–P. 5944–5953. 54.Hwang H. W., Wentzel E. A., Mendell J. T. A hexanucleotide element directs microRNA nuclear import // Science.–2007.–315, N 5808.–Ð. 97–100. 55.Politz J. C., Zhang F., Pederson T. MicroRNA-206 colocalizes with ribosome-rich regions in both the nucleous and cytoplasm of rat myogenic cells // Proc. Nat. Acad. Sci. USA.–2006.–103, N 50.–Ð. 18597–18620. 56. Long D., Lee R., Williams P., Chan C. Y., Ambros V., Ding J. Potent effect of target structure on microRNA function // Nat. Struct. Mol. Biol.–2007.–14, N 4.–Ð. 287–294. 57. Majoros W. H., Ohler U. Spatial preferences of microRNA targets in 3' untranslated regions // BMC Genom.–2007.–8, N 1.–Ð. 152–160. 58. Hon I. S., Zhang Z. The role of binding site arrangement and combinatorial targeting in microRNA expression of gene expression // Genome Biol.–2007.–8, N 8.–P. R166. 59. Grimson A., Farh K. K., Johnston W. K., Garrett-Engele P., Lim L. A., Bartel D. P. MicroRNA targeting specificity in mammalians: determinants beyond seed pairing // Mol. Cell.–2007.–27, N 1.–P. 91–105. 60. Wang B., Love T. M., Call M. E., Doench J. G., Novina C. D. Recapitulation of short RNA-directed translational gene silencing in vitro // Mol. Cell.–2006.–22, N 4.–Ð. 553–560. 61. Rajwsky N. MicroRNA target predictions in animals // Nat. Genet.–2006.–38.–S8–S13. 62. Brenhecke J., Stark A., Russel R. B., Cohen S. M. Principles of microRNA-target recognition // PLoS Biîl.–2005.–3.– å85. 63. Lin H. L., Hannon G. J. MicroRNAs: small RNAs with a big role in gene regulation // Nat. Genet.–2004.–5.–Ð. 522–531. 64. Maister G. miRNAs get an early start on translational silencing // Cell.–2007.–131, N 1.–P. 25–28. 65. Nilsen T. W. Mechanisms of microRNA-mediated gene regulation in animal cells // Trends Genet.–2007.–23, N 5.– P. 243–249. 66. Thermann R., Hentze M. W. Drosophila miR-2 induces pseudo-polysomes and inhibits translation initiation // Nature.–2007.–447, N 7146.–P. 875–878. 67. Kiriakidou M., Tan G. S., Lamprinaki S., De Planell-Saquer M., Nelson P. T., Mourelatos Z. An mRNA m7G cap binding-like motif within human Ago2 repression translation // Cell.–2007.–129, N 6.–P. 1141–1151. 68. Mathonnet G., Fabian M. R., Svitkin Y. V., Parsyan A., Huck L., Murata T., Biffo S., Merrick W. C., Darzynkiewicz E., PiMai R. S., Filipowicz W., Duchaine T. F., Sonenberg N. MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIR4F // Science.– 2007.–317, N 5845.–Ð. 1764–1767. 69. Standart N., Jackson R. J. MicroRNA repress translation of m7ppp-capped target mRNAs in vitro by inhibition initiation and promoting deadenylation // Genes Develop.–2007.–21, N 16.–Ð. 1975–1982. 70. Peterson C. P., Bordeleau M. E., Pelletier S., Sharp P. A. Short RNAs repress translation after initiation in mammalian cells // Mol. Cell.–2006.–21.–Ð. 533–542. 71. Maronåy P. A., Yu Y., Fisher J., Nilsån T. W. Evidence that microRNAs are associated with translating messenger RNAs in human cells // Nat. Struct. Mol. Biol.–2006.–13, N 12.– Ð. 1102–1107. 72. Nottrott S., Simard M. J., Richter J. D.Human let-7a miRNA blocks protein production on actively translating polyribosomes // Nat. Struct. Mol. Biol.–2006.–13, N12.– Ð. 1108–1114. 73. Eulalio A., Behm-Ansmant I., Schweizer D., Izaurralde E. P-body formations a consequence, but the cause of RNA-mediated gene silencing // Mol. Cell Biol.–2007.–27, N 11.–P. 3970–3981. 74. Chan S. P., Slack F. J. MicroRNA-mediated silencing inside P-bodies // RNA Biol.–2006.–3, N 3.–P. 97–100. 75. Bagga S., Bracht J., Hunter S., Massirer K., Holtz J., Eachus R., Pasquinelly A. E. Regulation by let-7and lin-4 miRNAs 476 SHIRINA T. V., BOBROVSKAYA M. T., KOZLOV E. A. results in target mRNA degradation // Cell.–2005.–122.– Ð. 553–563. 76. Tang G., Reinhart B. J., Bartel D. P., Zamore P. D. A biochemical framework for DNA silencing in plant // Genes Develop.–2003.–17.–Ð. 49–63. 77. Axtell M. J., Jan C., Rajagopalan R., Bartel D. P. A two-hit trigger for siRNA biogenesis in plants // Cell.–2006.–127, N 3.–Ð. 565–577. 78. Cai X., Schafer A., Lu S., Bilello J. P., Desrosiers R. C., Edwards R., Raab-Traub N., Cullen B. R. Epstein-Barr virus microRNA a reevolutionarily conserved and differentially expressed // PLoS Pathol.–2006.–2, N 3.–å23. 79. Kim H. K., Lee J. S., Sivaprasad U., Malhotra A., Dutta A. Muscle-specific microRNA miR-206 promotes muscle differentiation // J. Cell Biol.–2006.–174, N 5.–Ð. 677–687. 80. George A, D., Tenenbaum S. A. MicroRNA modulation of RNA-binding protein regulatory elements // RNA Biol.– 2006.–3, N 2.–Ð. 57–59. 81. Jopling C. L., Yi M., Lancaster A. M., Lemon S. M., Sarnov P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA // Science.–2005.–309.– Ð. 1577– 1581. 82. Leung A. K., Sharp P. A. MicroRNA: a safeguard against turmoil? // Cell.–2007.–130, N 9.–P. 581–585. 83. Sunkar R., Zhu J. K. Novel and stress-regulated microRNA and other small RNAs from Arabidopsis // Plant Cell.–2004.–16, N 8.–Ð. 2001–2019. 84. Berezikov E., Cuppen E., Plasterek R. H. A. Approaches to microRNA discovery // Nat. Genet.–2006.–38.– S2–S7. 85. Zang R., Pan X., Wang Q., Cobb G. P., Andersen T. A. Computational identification of microRNAs and their targets // Comput. Biol. Chem.–2006.–30, N 6.–Ð. 395–407. 86. Chen C., Ridzon D. A., Broomer A. J., Zhou Z., Lee D. H., Nguyen J. T., Barbisin M., Xu N. Z., Mahuvakar V. R., Andersen M. R., Zao K. Q., Livak K. J., Guegler K. J. Real-time quantification of microRNÀs by steam-loop RT-PCR // Nucl. Acids Res.–2005.–23, N 20.–e179. 87. Mourelatos Z., Dostie J., Paushkin S., Sharma A., Charroux B., Abel L., Rappsilber J., Mann M., Dreyfuss G. MiRNAs: a novel class of ribonucleoproteins containing numerous microRNAs // Genes Develop.–2002.–16.–P. 720–728. 88. Wang H., Ach R. A., Curry B. Direct and sensitive miRNA profiling from low-input total RNA // RNA.–2007.–13.– P. 151–159. 89. Einat P. Methodologies for high-through put expression profiling of microRNAs // Meth. Mol. Biol.–2006.–342.– Ð. 139–157. 90. Sempere L. F., Sokol N. S., Dubrovsky E. B., Berger E. M., Ambros V. Temporal regulation of microRNA expression in Drosophila melanogaster mediated by normal signals and broad-complex gene activity // Develop. Biol.–2003.–259.– Ð. 9–18. 91. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction // Nucl. Acids Res.–2003.–31.– Ð. 3406–3415. 92. Xue C., Li F., He T., Liu G. P., Li Y., Zhang X. Classificationof real and pseudomicroRNA precursors using local structure-sequence features and support vector mashine // Bioinformatics.–2005.– 6.–Ð. 310–316. 93. Lai E. C., Tomancak P., Williams R. W., Rubin G. M. Computational identification of Drosophila microRNA genes // Genom. Biol.–2003.–4, N 7.–R42. 94. Lim L. P., Lau N. C., Weinstein E. G., Abdelhakim A., Yekta S., Rhoades M. W., Burge C. B., Bartel D. P. The microRNAs of Caenorhabditis elegans // Genes Develop.–2003.–17.– Ð. 991–1008. 95. Ng K. L., Mishra S. K. De novo SVM classification of precursor microRNA from genomic pseudo hairpins using global and intrinsic folding measures // Bioinformatics.– 2007.–23, N 11.–Ð. 1321–1330. 96. Chaudhuri K., Chatterjee R. MicroRNA detection and target prediction: integration of computational and experimental approaches // DNA Cell Biol.–2007.–26, N 5.–Ð. 321–337. 97. Watanabe Y., Tomita M., Kanai A. Computational methods for microRNAs target prediction // Meth. Enzymol.– 2007.–427.–P. 65–86. 98. Huang J. C., Morris O. D., Frey B. J. Bayesian inference of microRNA targets from sequence and expression data // J. Comput. Biol.–2007.–14, N 5.–P. 550–563. 99. Doran J., Strauss W. M. Bioinformatic trends for the determination of miRNA-target interactions in mammals // DNA Cell Biol.–2007.–26, N 5.–P. 353–360. 100. Lindow M., Gorodkin J. Principles and limitations of computational microRNA gene and target finding // DNA Cell Biol.–2007.–26, N 5.–P. 339–351. 101. Yousef M., Jung S., Kossenkov A. V., Showe L. C., Showe M. K. Naive Bayes for microRNA target predictions machine learning for microRNA targets // Bioinformatic.–2007.–23, N 22.–P. 2987–2992. 102. Maziere P., Enright A. J. Prediction of microRNA targets // Drag. Discov. Today.–2007.–12, N 11–12.–Ð. 452–458. 103. Helvik S. A., Snove O., Saetrom P. Reliable prediction of Drosha processing sites improves microRNA gene prediction // Bioinformatics.–2007.–23, N 2.–P. 142–149. 104. Lagos-Quintane M., Rauhut R., Zenderkel W., Tushl T. Identification of novel genes coding for small expressed RNAs // Science.–2001.–294, N 5543.–Ð. 853–858. 105. Perera R. J., Ray A. MicroRNAs in the search for understanding human diseases // BioDrugs.–2007.–21, N 2.–Ð. 97–104. 106. Ahmed F. E. Role of miRNA in carcinogenesis and biomarker selection: a methodological view // Exp. Rev. Mol. Diagn.– 2007.–7, N 5.–P. 569–603. 107. Bennasser Y., Le S. Y., Yeung M. Z., Yeung K. T. HIV-1 encoded candidate microRNAs and their cellular targets // Retrovirology.–2004.–22, N 3.–Ð. 192–200. 108. Burnside J., Bernberg E., Anderson A., Lu C., Meyer S., Green P. J., Jain N., Isaacs G., Morgan R. W. Marek’s Disease virus encodes microRNAs that map to nuq and the latency-associated transcript // J. Virol.–2006.–80, N 17.– Ð. 8778–8786. 109. Lewis B. P., Burge C. B., Bartel D. P. Conserved seed pairing of ten flanked by adenosines indicates that thousands of human genes are microRNAs targets // Cell.–2005.–120.– Ð. 15–20. 110. Bhattacharyya S. N., Habermacher R., Martine U., Closs E. J., Filipowicz W. Relief of RNA-mediated translational repression in human cells subjected to stress // Cell.–2006.–125.–Ð. 1111–1124. 111. Yu Z., Jian Z., Shen S. H., Purisima E., Wang E. Global analysis of microRNA target gene expression reveals, that microRNA target are lower expressed in mature mouse and Drosophila tissues than in the embryos // Nucl. Acids Res.–2007.–35, N 1.–P. 152–164. 112. Darnell D. K., Kaur S., Stanislaw S., Konieczka J. K., Yatskievych T. A., Antin P. B. MicroRNA expression during chick embryo development // Develop. Dyn.–2006.–235, N 11.–Ð. 3156–3165. 477 MicroRNA: FROM FUN DA MEN TAL RE SEARCH TO THEIR AP PLI CA TION 113. Chen C., Ridzon D., Lee C. T., Blake J., Sun Y., Strauss W. M. Defining embryonic stem cell identity using differentian-relation microRNAs and their potential targets // Mamm. Genome.–2007.–18, N 5.–P. 316–327. 114. Puceat M., Ballis A. Embryonic stem cells: from bench to bedside // Clin. Pharmacol. Ther.–2007.–82, N 3.–P. 337– 339. 115. Wang Y., Medvid R., Melton C., Jeanisch R., Blelloch R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self- renewal // Nat. Genet.–2007.–39, N 3.–P. 380–385. 116. Sempere L. F., Cole C. N., McPeek M. A., Peterson K. J. The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint // J. Exp. Zool. B Mol. Develop. Evol.–2006.–306, N 6.–P. 575–588. 117. Zhang B., Pan X., Anderson T. A. Identification of 188 conserved maize microRNAs and their targets // FEBS Lett.–2006.–580, N 15.–Ð. 3753–3762. 118. Xia X. G., Zhou H., Samper E., Melov S., Xu Z. Pol II expressed shRNA Sod 2 gene expression and causes phenotypes of the gene knockdown in mice // PLoS Genet.–2006.–2, N 1.–å10. 119. Song L., Tuan R. S. MicroRNA and ñell differentiation in mammalian development // Birth Defects Res. C. Embryo Today.–2006.–78, N 2.–Ð. 140–149. 120. Min H., Chen C. Z. Methods for emalyzing microRNA expression and function during hematopoietic lineage differentiation // Meth. Mol. Biol.–2006.–342.–Ð. 209–227. 121. Chen Y., Stallings R. L. Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis // Cancer Res.–2007.–67, N 3.–P. 976–983. 122. Raftopoulou M. MicroRNA signals cell fate // Nat. Cell. Biol.–2006.–8, N 2.–P. 112. 123. Yang J. H., Han S. J., Yoon E. K., Lee W. S. Evidence of auxin signal pathway, microRNA 167- ARF8-GH3, and its response to exogenous auxin in cultural rice cells // Nucl. Acids Res.–2006.–34, N 6.–Ð. 1892–1899. 124. Carleton M., Cleary M. A., Linsley P. S. MicroRNA and cell cycle regulation // Cell Cycle.–2007.–6, N 17.–P. 2127– 2132. 125. Ryan D. G., Oliveira-Fernandes M., Lavker R. M. MicroRNA of the mammalian eye display distinct and overlapping tissue specificity // Mol. Vis. 2006.–12.– P. 1175–1184. 126. Karali M., Peluso I., Marigo V., Barifi S. Identification and characterization of microRNAs expressed in the mouse eye // Invest. Ophthalmol. Vis. Sci.–2007.–48, N 2.– P. 509–512. 127. Bland C. S., Cooper T. A. Micromanaging alternative splicing during muscle differentiation // Genes Develop.–2007.–21, N 1.–P. 71–84. 128. Oakley E. J., Van Zant G. Unraveling the complex regulation of stem cells: implications for aging and cancer // Leukemia.–2007.–21, N 4.–P. 612–621. 129. Chang T. C., Wentzel E. A., Kent O. A., Ramachandran K., Mullendore M., Lee K. H., Feldmann G., Ymakuchi M., Ferlito M., Lowenstein C. J., Arking D. E., Beer M. A., Maitra A., Mendell J. T. Transactivation of miR-34a by P53 broadly influences gene expression and promotes apoptosis // Mol. Cell.–2007.–26, N 5.–P. 745–752. 130. Raver-Shapira N., Marciano E., Meih E., Sepetor Y., Rosenfeld N., Moskovits N., Bentwich Z., Oren M. Transcriptional activation of miR-34 a contributes to p53-mediated apoptosis // Mol. Cell.–2007.–26, N 5.–P. 731– 743. 131. Zhang B., Pan X., Cobb G. P., Anderson T. A. MicroRNAs as oncogene and tumor suppressor // Develop. Biol.–2007.–302, N 8.–P. 1–12. 132. Coller H. A., Forman J. J., Legesse-Miller A. «Myc’ed messages»: myc induces transcription of E2F1 while inhibiting its translation via a microRNA polycystron // PLoS Genet.–2007.–3, N 8.–e146. 133. Molt J. L., Kabayashi S., Bronk J. F., Gores G. J. mir-29 regulates Mcl-1 protein expression and apoptosis // Oncogene.–2007.–26, N 42.–P. 6133–6140. 134. le Sage C., Nagel R., Egan D. A., Schrier M., Mesman E., Mangiola A., Anile C., Maira G., Mercatelli N., Ciafre S. A., Farace M. G., Agami R. Regulation of the p27 (Kip 1) tumor suppressor by mir-221 and mir-222 promotes cancer cell proliferation // EMBO J.–2007.–26, N 15.–P. 3699–3708. 135. Cui Q., Yu L., Purisima E. O., Wang E. Principles of microRNA regulation of a human cellular signaling network // Mol. Syst. Biol.–2006.–2.–P. 46–52. 136. Valdstrup S.The adaptation of TSH secretion to autonomy in non-toxic goiter may be based on active regulation of set-point and sensivity of central TSH-receptor, perhaps by the microRNA (MIR) gene // Med. Hypothesis.–2006.–67, N 3.–Ð. 588–591. 137. Mark F., Mehler M. F., Mattick J. S. Non-coding RNAs in the nervous system // J. Physiol.–2006.–575, N 2.–Ð. 333–341. 138. Wu J., Xie X. Comparative sequence analysis an intricate network among REST, CREB and miRNA in mediating neuronal gene expression // Genome Biol.–2006.–7, N 9.–R85. 139. Kosik K. S. The neuronal microRNA system // Nat. Rev. Neurosñi.–2006.–122.–Ð. 911–920. 140. Makeyv E. V., Zhang J., Carrasco M. A., Maniatis T. The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing // Mol. Cell.–2007.–27, N 3.–P. 435–448. 141. Hengst U., Jaffrey S. R. Function and translational regulation of mRNA in developing axons // Semin. Cell Develop. Biol.–2007.–18, N 2.–P. 209–215. 142. Ramkissoon S. H., Mainwaring L. A., Ogasawara Y., Keyvanfar K., McCoy I. P., Sloand E. M., Kajigaya S., Young N. S. Hematopoietic-specific microRNA expression in human cells // Leuk. Res.–2006.–30, N 5.–P. 643–647. 143. Nervi C., Fazi F., Rosa A., Fatica A., Bozzoni J. Emerging role for microRNAs in acute promyelocytic leukemia // Curr. Top. Microbiol. Immunol.–2007.–313.–Ð. 73–84. 144. Lawric C. H. MicroRNAs and haematology: small molecules, big function // Brit. J. Haematol.–2007.–137, N 6.–P. 503–512. 145. Grivna B. T., Pyhtila B., Lin H. MIWI associates with translational machinery and PIWI-interacting RNAs (piRNAs) in regulating spermatogenesis // Proc. Nat. Acad. Sci. USA.–2006.–103, N 36.–P. 13415–13420. 146. Cobb B. S., Hertweck A., Smith J., O’Connor E., Graf D., Cook T., Smale S. T., Sakaguchi S., Zivescy F. G., Fisher A. G., Merkenshlager M. A role for Dicer in immune regulation // J. Exp. Med.–2006.–203, N 11.–P. 2519–2527. 147. Dahlberg J. E., Lund E. Micromanagement during the innate immune response // Sci. STKE.–2007.–387.–pe25. 148. Thai T. H., Calado D. P., Casola S., Ansel K. M., Xiao C., Xue Y., Murphy A., Frendewey D., Valenzuela D., Kutok J. L., Schmidt-Supprian M., Rajewsky N., Yancopoulos G., Rao A., 478 SHIRINA T. V., BOBROVSKAYA M. T., KOZLOV E. A. Rajewsky K. Regulation of the germinal center response by microRNA-155 // Science.–2007.–316, N 5824.–P. 604–608. 149. Ro dri guez A., Vigorito E., Clare S., War ren M. V., Couttet P., Soond D. R., van Dongen S., Grocock R. J., Das P. P., Miska E. A., Vetrie D., Okkenhaug K., Enright A. J., Dougan G., Turner M., Bradley A. Re quire ment of bic/microRNA-155 for nor mal im mune func tion // Sci - ence.–2007.–316, N 5824.–P. 608–614. 150. Hobert O. miRNA play a tune // Cell.–2007.–131, N 1.– P. 22–24. 151. Wu H., Neilson J. K., KumarP., Manocha M., Shankar P., Sharp P. A., Manjunath N. miRNA pro fil ing of na ive, effector and mem ory CD8 cells // PLoS ONE.–2007.–2, N 10.–e1020. 152. Boutz P. L., Chawla G., Stoilov P., Bloch D. L. MicroRNAs reg u late the ex pres sion of the al ter na tive splic ing fac tor nPTB dur ing mus cle de vel op ment // Genes De - velop.–2007.–21, N 1.–Ð. 71–84. 153. Brueckner B., Stresemann C., Kuner R., Musch T., Meister M., Sultmann H., Lyko F. The hu man let-7a-3 lo cus con tains epigenetically reg u lated microRNA gene with oncogenic func tion // Can cer. Res.–2007.–67, N 4.–P. 1419–1423. 154. Lujambio A., Roperos S., Ballestar E., Fraga M. F., Cerrato C., Setein F., Gasado S., Suarez-Gauthier A., Sanchez-Cespedes M., Gitt A., SpiteriI., Dass P. P., Caldas C., Miska E., Esteller M. Ge netic un mask ing of an epigenetically si lenced microRNA in hu man can cer cells // Can cer Res.–2007.–67, N4.–P. 1424–1429. 155. Huppi K., Volfovsky N., Mackiewicz M., Runfola T., Jones T. L., Mar tin S. E., Stephens R., Caplen N. J. MicroRNA and genomic in sta bil ity // Semin. Can cer Biol.–2007.–17, N 1.– P. 65–73. 156. Saetrom P., Snove O. Jr., Rossi J. J. Epigenetics and microRNAs // Pediats. Res.–2007.–61, N 5, pt 2.–17R–23R. 157. Krutzfeldt J., Stoffel M. MicroRNAs: a new class of reg u la - tory genes af fect ing me tab o lism // Cell Metab.–2006.–4, N 1.–Ð. 9–12. 158. Mercey B. D., Jin P., Danner D. J. Hu man microRNA (miR 296) ex pres sion con trols amount of branched chain alfaketoacid dehydrogenase com plex in a cell // Hum. Mol. Genet.–2005.–14, N 22.–Ð. 3371–3377. 159. Esau C., Davi S., Murray S. F., Xu X. X., Pandey S. K., Pear M., Watts Z., Booten S. L., Gra ham M., McKay R., Subramaniam A., Propp S., Lollo B. A., Prier S., Bennett C. F., Bhanot S., Monia B. P. miR-122 reg u la tion of lipid me - tab o lism re vealed by in vivo antisense tar get ing // Cell Metabol.–2006.–3, N 2.–Ð. 87–98. 160. Gauthier B. R., Wollheim C. B. MicroRNA: «ribo-reg u la - tors» of glu cose ho meo sta sis // Nat. Med.– 2006.–12.–Ð. 36–38. 161. Chiou T. J., Aung K., Lin S. J., Wu C. C., Chiang S. F., Su C. L. Reg u la tion of phos phate ho meo sta sis by microRNA in Arabidopsis // Plant Cell.–2006.–18, N 2.–Ð. 412–421. 162. Uney J. B., Ligthman S. L. MicroRNAs and os motic reg u la - tion // Proc. Nat. Acad. Sci. USA.–2006.–103, N 42.–Ð. 15278–15279. 163. Liang H., Li W. H. MicroRNA reg u la tion of hu man pro - tein-pro tein in ter ac tion net work // RNA.–2007.–13, N 9.–P. 1402–1408. 164. Duan R., Jin P. Iden ti fi ca tion of mes sen ger RNAs and microRNAs as so ci ated with frag ile X men tal re tar da tion pro tein // Meth. Mol. Biol.–2006.–342.–Ð. 267–276. 165. Care A., Catalucci D., Felicetti F., Bonci D., Addario A., Gallo P., Bang M. J., Segnalini P., Gu Y., Dal ton N. D., Elia J., Latronico M. V., Neydal M., Autore C., Russo M. A., Dorn J. W., Ellingsen O., Ruiz-Lozano P., Pe ter son K. J., Croce C. M., Peschle C., Condorelli G. MicroRNA-133 con trols car diac gypertrophy // Nat. Med.–2007.–13, N 5.– P. 613– 618. 166. Thum T., Galuppo P., Wolf C., Fiedler J., Kneitz S., van Zaake L. W., Doevendans P. A., Mum mery C. L., Borlak J., Haverich A., Gross C., Engelhardt S., Erti G., Bauersachs J. MicroRNAs in the hu man heart: a clue to fe tal gene re pro - gram ming in heart fail ure // Cir cu la tion.–2007.–116, N 3.–P. 258–267. 167. Xu C., Lu Y., Pan Z., Chu W., Luo X., Lin H., Xiao J., Shan H., Wang Z., Yang B. The mus cle-spe cific microRNAs miR-1 and miR-133 pro duce op pos ing ef fects on apoptosis by tar get ing HSP 60, HSP 70 and caspase-9 in cardiomyocytes // J. Cell Sci.–2007.–120, Pt 17.–P. 3045–3052. 168. Jeyaseelan K., Herath W. B., Armugan A. MicroRNAs as ther a peu tic tar gets in hu man dis eases // Exp. Opin Ther. Tar - gets.–2007.–11, N 8.–P. 1119–1129. 169. Van Rooij E., Olson E. N. MicroRNAs: pow er ful new reg u - la tors of heart dis ease and pro voc a tive ther a peu tic // J. Clin. In vest.–2007.–117, N 9.–P. 2369–2376. 170. Sayed D., Hong C., Chen I. Y., Lypowy J., Abdellatif M. MicroRNAs play an es sen tial role in the de vel op ment of car - diac hy per tro phy // Circ. Res.–2007.–100, N 3.– P. 416–424. 171. O’Connel R. M., Taganov K. D., Boldin N. P., Cheng G., Baltimor D. MicroRNA-155 is in duced dur ing the macrophage in flam ma tory re sponse // Proc. Nat. Acad. Sci. USA.–2007.–104, N 5.–P. 1604–1609. 172. Rane S., Sayed D., Abdellatif M. microRNA with a macrofunction // Cell Cy cle.–2007.–6, N 15.–P. 1850–1855. 173. Wu W., Sun M., Zou G. M., Chen J. MicroRNA and can cer: cur rent sta tus and pro spec tive // Int. J. Can cer.–2007.–120, N 5.–P. 953–960. 174. Lee E. J., Gusev Y., Jiang J., Nuovo G. J., Lermer M. R., Frankel W. L., Mor gan D. L., Postier R. G., Brackett D. J., Schmittgen T. D. Ex pres sion pro fil ing iden ti fies microRNA sig na ture in pan cre atic can cer // Int. J. Can cer.–2007.–120, N 5.–P. 1046–1054. 175. Xu W., Zi Y. Y. MicroRNA gene ex pres sion in ma lig nant lymphoproliferative dis or ders // Clin. Med. J.–2007.–120, N 11.–P. 996–999. 176. Lawrie C. H. MicroRNA ex pres sion in lym phoma // Exp. Opin. Biol. Ther.–2007.–7, N 9.–P. 1363–1374. 177.Giannakakis A., Coukas G., Hatzigeorgion A., Sandaltzoupoulos R., Zhang L. miRNA ge netic al ter ations in hu man can cers // Exp. Opin. Biol. Ther.–2007.–7, N 9.– P. 1375–1386. 178. Sabramanian S., Lui W. O., Lee C. H., Espinosa I., Niel sen T. O., Hein rich M. C., Corless C. I., Fire A. Z., Van de Rign M. MicroRNA ex pres sion sig na ture of hu man sar co mas // Onco gene.–2007.–Oct. 8 [ Epub]. 179. Blenkizon C., Goldstein L. D., Thorne N. P., Spiteri I., Chin S. F., Dun ning M. J., Barbosa-Morais N. L., Teschendorff A. E., Green A. R., Ellis I. O., Tavare S., Caldas C., Miska E. A. MicroRNA ex pres sion pro fil ing of hu man breast can cer iden ti fies new mark ers of tu mour sub type // Ge nome Biol.–2007.–8, N 10.–R214. 479 MicroRNA: FROM FUN DA MEN TAL RE SEARCH TO THEIR AP PLI CA TION 180.Wurdinger T., Costa F. F. Mo lec u lar ther apy in the microRNA era // Pharmacogenomics J.–2007.–7, N 5.– P. 297–304. 181. Yeung M. L., Bennasser Y., Jeang K. T. MiRNAs in the biology of cancers and viral infection // Curr. Med. Chem.–2007.–14, N 2.–Ð. 191–197. 182. Osada H., Takahashi T. MicroRNAs in biological processes and carcinogenesis // Carcinogenesis.–2007.–28, N 1.– P. 2–12. 183. Wijnhoven B. P., Michael M. L., Watson D. I. MicroRNA and cancer // Brit. J. Surg.–2007.–94, N 1.–P. 23–30. 184. Porkka K. P., Pfeiffer M. J., WalteringK. K., Vessella R. L., Tammela T. L., Visacorpi T. MicroRNA expression profiling in prostate cancer // Cancer Res.–2007.–67, N 13.–P. 6130– 6135. 185. Jay C., Nemunaitis J., Chen P., Fulgham P., Tong A. W. MiRNA profiling for diagnosis and prognosis of human cancer // DNA Cell Biol.–2007.–26, N 5.–P. 293–300. 186. Hernando E. MicroRNAs and cancer: role in tumorigenesis, patient classification and therapy // Clin. Trans. Oncol.–2007.–9, N 3.–P. 155–160. 187. Zhang W., Dalberg J. E., Tam W. MicroRNAs in tumorigenesis: a primer // Am. J. Pathol.–2007.–171, N 3.– P. 728–738. 188. Voorhoeve P. M., Agami R. Classifying microRNAs in cancer: the good, the bad and the ugly // Biochim. et Biophys. Acta.–2007.–1775, N 2.–P. 274–282. 189. Calin G. A., Pekarsky Y., Croce C. M. The role of microRNA and other non-coding RNA in the pathogenesis of chronic lymphocytic leukemia // Best Pract. Res. Clin. Haematol.– 2007.–20, N 3.–P. 425–437. 190. Ma. L., Teruya-Feldstein J., Wienberg R. A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer // Nature.–2007.–449, N 7163.–P. 682–688. 191. Matsutara H., Takeuchi T., Nishikawa E., Yanagisawa K., Hayashuita Y., Ebi H., Yamada H., Suzuki M., Nagino M., Nemura Y., Osada H., Takahashi T. Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancer overexpressing miR-17-92 // Oncogene.– 2007.–26, N 41.–P. 6099–6105. 192. Corsten M. F.,Miranda R., Kasmieh R., Krichevsky A. M., Weissleder R., Shah K. MicroRNA-21 knockdown disrupt glioma in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas // Cancer Res.–2007.–67, N 19.–P. 8994–9000. 193. Bottoni A., Zatelli M. C., Ferracin M., Tagliati F., Piccin D., Vignali C., Calin G. A., Negrini M., Croce C. M., Degli U. E. C. Identification of differentially expressed microRNA by microarray: a possible role for microRNA genes in pituitary adenomas // J. Cell Physiol.–2007.– 210, N 2.–P. 370–377. 194. Pallante P., Visone R., Ferracin M., Ferraro A., Berlingierri M. T., Troneone G., Chippetta G., Lin C. G., Santoro M., Negrini M., Croce C. M., Fusko A. MicroRNA deregulation in human thyroid papillary carcinomas // Endocrinol. Relat. Cancer.–2006.–13, N 2.–P. 497–508. 195. Volinia S., Calin G. A., Liu C. G., Ambs S., Cimmino A., Petrocca F., Visone R., Jorio M., Roldo C., Ferracin M., Prueitt R. L., Yanaihara N., Lanza G., Searpa A., Vecchione A., Negrini M., Harris C. C., Croce C. M. A microRNA expression signature of human solid tumors defines cancer gene targets // Proc. Nat. Acad. Sci. USA.–2006.–103, N 7.–P. 2257–2261. 196. Liu W., Mao S. Y., Zhu W. Y. Impact of tiny miRNAs on cancer // World J. Gastroenterol.–2007.– 13, N 4.–P. 497– 502. 197. Nairz K., Roffig C., Rintelen F., Zdobnov E., Moser M., Hafen E. Overgrowth caused by misexpression of a microRNA with dispensable wild-type function // Develop. Biol.–2006.–291, N 2.– P. 314–324. 198. Weber F., Teresi R. F., Broelsch C. E., Frilling A., Eng C. A limited set of human microRNA is deregulated in follicular thyoid carcinoma // J. Clin. Endocrinol. Metab.–2006.–91, N 9.–P. 3584–3591. 199. Lee Y. S., Dutta A. MicroRNA: small but potent oncogenes or tumor suppressors // Invest. Drugs.–2006.–7, N 6.–P. 560– 564. 200. Tam W., Dahlberg J. I. MiR 155/BIC as an oncogenic microRNA // Genes Chromosom. Cancer.–2006.–45, N 2.– P. 211–212. 201. Hayashita Y., Osada H., Tatematsu Y., Yamada P., Yanagisawa K., Tomida S., Yatabe Y., Kawahara K., Sekido Y., Takahashi T. A polycystronic microRNA cluster, miR-17-92, is overexpressed in human lung cancer and enhances cell proliferation // Cancer Res.–2005.–65, N 21.–P. 9628–9632. 202. Voorhoeve P. M., Le Sage C., Schrier M., Gillis A. J., Stoop H., Nagel R., Liu J. P., Van Duijse J., Drost J., Griekspoor A., Zlotozynski E., Yabuta N., De Vita G., Nojima H., Looijenga L. H., Agami R. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumor // Cell.–2006.–124, N 6.–P. 1169–1181. 203. Akao Y., Nakagawa Y., Naoe T. MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancer // Oncol. Rep.–2006.–16, N 4.–P. 845–850. 204. Yu S. L., Chen H. Y., Yang P. S., Chen J. J. Unique microRNA signature and clinical outcome of cancers // DNA Cell Biol.–2007.–26, N 5.–P. 283–292. 205. Esquela-Kerscher A., Slaek F. J. Oncomirs – microRNAs with a role in cancer // Nat. Rev. Cancer.–2006.–6.–P. 259– 269. 206. Kent O. A., Mendell J. T. A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes // Oncogene.–2006.–25, N 46.–P. 6188–6196. 207. Hammond S. M. MicroRNAs as oncogene // Curr. Opin Genet. Develop.–2006.–16, N 1.–P. 4–9. 208. Hwang H. W., Mendel J. T. MicroRNA in cell proliferation, cell death, and tumorigenesis // Brit. J. Cancer.–2006.–94, N 6.–P. 776–780. 209.Janott G., Simard M. J. Tumour-related microRNAs functions in Caenorhabditis elegans // Oncogene.–2006.–25, N 46.–P. 6197–6201. 210. Calin G. A., Croce C. M. Genomics of chronic lymphocytic leukemia microRNAs as ew players with clinical significance // Semin. Oncol.–2006.–33, N 2.–P. 167–173. 211. Hossain A., Kuo M. T., Saunders G. F. Mir 17-5p regulates breast cancer cell proliferation by inhibiting translation of ALB1mRNA // Mol. Cell Biol.–2006.–26, N 21.– P. 8191–8201. 212.Hwang H. W., Mendell J. T. MicroRNAs in cell proliferation, cell death, and tumorigenesis // Brit. J. Cancer.–2007.–96, suppl.–R40–44. 213.Tricoli J. V., Jacobson J. W. MicroRNA: potential for cancer detection, diagnosis, and prognosis // Cancer Res.–2007.–67, N 10.–P. 4553–4555. 480 SHIRINA T. V., BOBROVSKAYA M. T., KOZLOV E. A. 214. Perron M. P., Boissonneault V., Gobeil L. A., Ouellet D. L., Provost P. Regulatory RNAs: future perspectives in diagnosis, prognosis, and individualized therapy // Meth. Med. Biol.–2007.–163.–P. 311–326. 215. Negrini M., Feracin M., Sabbioni S., Croce C. M. MicroRNAs in human cancer: from research to therapy // J. Cell Sci.–2007.–120, pt 11.–P. 1833–1840. 216. Esau C. C., Monia B. P. Therapeutic potential for microRNAs // Adv. Drug Deliv. Rev.–2007.–59, N 2–3.– P. 101–114. 217. Jeyaseelan K., Herath W. B., Armugam A. MicroRNAs as therapeutic targets in human disease // Exp. Opin. Ther. Targets.–2007.–11, N 8.–P. 1119–1129. 218.Bandres E., Agirre X., Ramirez N., Zarate R., Garcia-Fonsillas J. MicroRNAs as cancer players: potential clinical and biological effects // DNA Cell Biol.–2007.–26, N 5.–P. 273–282. 219. Krutzfeldt J., Rayewsky N., Braich R., Rajeev K. G., Tusch T., Manoharan M., Stoffel M. Silencing of microRNAs in vivo with «antagomirs» // Nature.–2005.–438, N 7068.–P. 685– 689. 220. Orom U. A., Kauppinen J., Lund A. H. LNA-modified oligonucleotides mediate specific inhibition of microRNA function // Gene.–2006.–10, N 372.–P. 137–141. 221. Naguibneva J., Ameyar-Zazona M.,Nonne N., Polesskaya A., Ait-Si-Ali S., Groisman R., Sonidi M., Pritchard L. L., Harol-Bellan A. An LNA-based loss-of-function assay for microRNAs // Biomed. Pharmacother.–2006.–60, N 9.– P. 633–638. 222. Tsuda N., Ishiyama S., Li Y., Ioannides C. G., Abbruzzese J. L., Chang D. L. Synthetic microRNA dåsignåd to target glioma-associated transcription factor inhibits division and induces late apoptosis in pancreatic tumor cells // Clin. Cancer Res.–2006.–21, N 21.–P. 6557–6564. 223. Davis S., Lollo B., Fraier S., Esau C. Improved targeting of miRNA with antisense oligonucleotides // Nucl. Acids Res.–2006.–34, N 8.–P. 2294–2304. 224. Mattes J., Yang M., Foster P. S. Regulation of microRNA by antagomirs: a new class of pharmacological antagomirs for the specific regulation of gene function? // Am. J. Respir. Cell Mol. Biol.–2007.–36, N 1.–P. 8–12. 225. Snove O. N., Rossi J. J. Toxisity in mice expressing short hairpin RNAs gives new insight intoRNAi // Genome Biol.–2006.–7, N 8.–P. 231. 226. Grimm D., Streetz K. L., Jopling C. L., Storm T. A., Pandey K., Davis C. R., Marion P., Salazar F., Kay M. A. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways // Nature.–2006.–441, N 7092.– Ð. 537–541. 227. John M., Constien R., Akinc A., Goldberg M., Moon Y.-A., Spranger M., Hadwiger P., Soutschek J., Vornlocher H.-P., Manohacan M., Stoffel M., Langer R., Anderson D. G., Horton G. D., Koteliansky V., Bumcrot D. Effective RNAi-mediated gene silencing without interruption of the endogenous microRNA pathway // Nature.–2007.–449.– P. 745–747. 228. Jain K. K. Commercial potential of RNAi // Mol. Biosyst.–2006.–2.–P. 523–526. UDC 577.21:615.01:616-092 Re ceived 14.02.07 481 MicroRNA: FROM FUN DA MEN TAL RE SEARCH TO THEIR AP PLI CA TION