Роль белка pif1 оболочки вируса ядерного полиэдроза Spodoptera littoralis в процессе проникновения вируса в клетку
Исследовали роль pif1 – белка оболочки вируса ядерного полиэдроза S. littoralis в процессе проникновения вируса в колончатую клетку кишечника насекомого. Показано, что делетирование pif1 из вирусного генома не блокирует процесс слияния вирусной и клеточной мембран, детектируемого методом восстановле...
Gespeichert in:
| Datum: | 2007 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут молекулярної біології і генетики НАН України
2007
|
| Schriftenreihe: | Біополімери і клітина |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/157517 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Роль белка pif1 оболочки вируса ядерного полиэдроза Spodoptera littoralis в процессе проникновения вируса в клетку / О.Ю. Ревякина, И.М. Кихно // Біополімери і клітина. — 2007. — Т. 23, № 5. — С. 425-432. — Бібліогр.: 25 назв. — рос., англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-157517 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1575172025-02-23T18:16:53Z Роль белка pif1 оболочки вируса ядерного полиэдроза Spodoptera littoralis в процессе проникновения вируса в клетку A role of Spodoptera littoralis nuclear polyhedrosis virus envelope protein pif 1 in the process of primary infection of insect midgut Роль білкa pif1 оболонки вірусy ядерного поліедрозу Spodoptera littoralis y процесі первинного інфікування клітин кишечника комахи Ревякина, О.Ю. Кихно, И.М. Віруси та клітина Исследовали роль pif1 – белка оболочки вируса ядерного полиэдроза S. littoralis в процессе проникновения вируса в колончатую клетку кишечника насекомого. Показано, что делетирование pif1 из вирусного генома не блокирует процесс слияния вирусной и клеточной мембран, детектируемого методом восстановления флуоресценции октадецил-родамин-В-хлорида. С привлечением техники ОТ-ПЦР показано, что функцией pif1 является обслуживание одного или нескольких этапов жизненного цикла вируса, предшествующих проникновению вирусной ДНК в ядро, предположительно таких, как интернализация нуклеокапсида, его транспортировка, освобождение вирусной ДНК из капсида и ее внедрение в ядро. Досліджували роль pif1 – білка оболонки вірусу ядерного поліедрозу S. littoralis у процесі проникнення вірусу в колончасту клітину кишечника комахи. Показано, що делетування pif1 з вірусного геному не блокує процесу злиття вірусної і клітинної мембран, що детектується за допомогою методу відновлення флуоресценції октадецил-родамін-В-хлориду. Із застосуванням техніки ЗT-ПЛР показано, що функцією pif1 є обслуговування одного або кількох етапів життєвого циклу вірусу, які передують проникненню вірусної ДНК в ядро, прогнозовано таких, як інтерналізація нуклеокапсиду, його транспорт, вивільнення вірусної ДНК з капсиду і її входження у ядро. A role of the envelope protein pif 1 of Spodoptera littoralis nuclear polyhedrosis virus in the process of viral penetration into the midgut columnar cell of the insect has been investigated. It has been shown that pif1 deletion from viral genome does not block viral and cell membrane fusion detected by octadecyl- rhodamin-B-chloride fluorescence dequenching assays. The use of RT PCR techniques allowed to demonstrate that pif1 was predicted to be an executor of some step(s) of viral life cycle upstream of viral DNA entry into the nucleus, presumably such as nucleocapsid internalization, nucleocapsid transport, viral DNA release from capsid and its penetration into the nucleus. 2007 Article Роль белка pif1 оболочки вируса ядерного полиэдроза Spodoptera littoralis в процессе проникновения вируса в клетку / О.Ю. Ревякина, И.М. Кихно // Біополімери і клітина. — 2007. — Т. 23, № 5. — С. 425-432. — Бібліогр.: 25 назв. — рос., англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.00077D https://nasplib.isofts.kiev.ua/handle/123456789/157517 578.841:578.23.3 ru Біополімери і клітина application/pdf application/pdf Інститут молекулярної біології і генетики НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
Russian |
| topic |
Віруси та клітина Віруси та клітина |
| spellingShingle |
Віруси та клітина Віруси та клітина Ревякина, О.Ю. Кихно, И.М. Роль белка pif1 оболочки вируса ядерного полиэдроза Spodoptera littoralis в процессе проникновения вируса в клетку Біополімери і клітина |
| description |
Исследовали роль pif1 – белка оболочки вируса ядерного полиэдроза S. littoralis в процессе проникновения вируса в колончатую клетку кишечника насекомого. Показано, что делетирование pif1 из вирусного генома не блокирует процесс слияния вирусной и клеточной мембран, детектируемого методом восстановления флуоресценции октадецил-родамин-В-хлорида. С привлечением техники ОТ-ПЦР показано, что функцией pif1 является обслуживание одного или нескольких этапов жизненного цикла вируса, предшествующих проникновению вирусной ДНК в ядро, предположительно таких, как интернализация нуклеокапсида, его транспортировка, освобождение вирусной ДНК из капсида и ее внедрение в ядро. |
| format |
Article |
| author |
Ревякина, О.Ю. Кихно, И.М. |
| author_facet |
Ревякина, О.Ю. Кихно, И.М. |
| author_sort |
Ревякина, О.Ю. |
| title |
Роль белка pif1 оболочки вируса ядерного полиэдроза Spodoptera littoralis в процессе проникновения вируса в клетку |
| title_short |
Роль белка pif1 оболочки вируса ядерного полиэдроза Spodoptera littoralis в процессе проникновения вируса в клетку |
| title_full |
Роль белка pif1 оболочки вируса ядерного полиэдроза Spodoptera littoralis в процессе проникновения вируса в клетку |
| title_fullStr |
Роль белка pif1 оболочки вируса ядерного полиэдроза Spodoptera littoralis в процессе проникновения вируса в клетку |
| title_full_unstemmed |
Роль белка pif1 оболочки вируса ядерного полиэдроза Spodoptera littoralis в процессе проникновения вируса в клетку |
| title_sort |
роль белка pif1 оболочки вируса ядерного полиэдроза spodoptera littoralis в процессе проникновения вируса в клетку |
| publisher |
Інститут молекулярної біології і генетики НАН України |
| publishDate |
2007 |
| topic_facet |
Віруси та клітина |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/157517 |
| citation_txt |
Роль белка pif1 оболочки вируса ядерного полиэдроза Spodoptera littoralis в процессе проникновения вируса в клетку / О.Ю. Ревякина, И.М. Кихно // Біополімери і клітина. — 2007. — Т. 23, № 5. — С. 425-432. — Бібліогр.: 25 назв. — рос., англ. |
| series |
Біополімери і клітина |
| work_keys_str_mv |
AT revâkinaoû rolʹbelkapif1oboločkivirusaâdernogopoliédrozaspodopteralittoralisvprocesseproniknoveniâvirusavkletku AT kihnoim rolʹbelkapif1oboločkivirusaâdernogopoliédrozaspodopteralittoralisvprocesseproniknoveniâvirusavkletku AT revâkinaoû aroleofspodopteralittoralisnuclearpolyhedrosisvirusenvelopeproteinpif1intheprocessofprimaryinfectionofinsectmidgut AT kihnoim aroleofspodopteralittoralisnuclearpolyhedrosisvirusenvelopeproteinpif1intheprocessofprimaryinfectionofinsectmidgut AT revâkinaoû rolʹbílkapif1obolonkivírusyâdernogopolíedrozuspodopteralittoralisyprocesípervinnogoínfíkuvannâklítinkišečnikakomahi AT kihnoim rolʹbílkapif1obolonkivírusyâdernogopolíedrozuspodopteralittoralisyprocesípervinnogoínfíkuvannâklítinkišečnikakomahi |
| first_indexed |
2025-11-24T06:36:18Z |
| last_indexed |
2025-11-24T06:36:18Z |
| _version_ |
1849652599431626752 |
| fulltext |
VIRUSES AND CELL
A role of Spodoptera littoralis nu clear polyhedrosis vi rus
en ve lope pro tein pif1 in the pro cess of pri mary in fec tion
of in sect midgut
O. Yu. Reviakina, I. M. Kikhno
In sti tute of mo lec u lar bi ol ogy and ge net ics NAS of Ukraine
Academicain Zabolotnog str., 150, Kyiv, 03680 Ukraine
i.m.kikhno@imbg.org.ua
A role of the en ve lope pro tein pif1 of Spodoptera littoralis nu clear polyhedrosis vi rus in the pro cess of vi ral
pen e tra tion into the midgut co lum nar cell of the in sect has been in ves ti gated. It has been shown that pif1 de -
le tion from vi ral ge nome does not block vi ral and cell mem brane fu sion de tected by
octadecyl-rhodamin-B-chlo ride flu o res cence dequenching as says. The use of RT PCR tech niques al lowed
dem on strat ing that pif1 was pre dicted to be an ex ec u tor of some step(s) of vi ral life cy cle up stream of vi ral
DNA en try into the nu cleus, pre sum ably such as nucleocapsid in ter nal iza tion, nucleocapsid trans port, vi ral
DNA re lease from capsid and its pen e tra tion into the nu cleus.
Keywords: vi rus en try into the cell, baculovirus, pif1
In tro duc tion. Rep re sen ta tives of dif fer ent vi ral
groups have com mon ways of en try into the cell. In
par tic u lar, en vel oped vi ruses pen e trate into the cell by
means of vi ral and cell mem branes fu sion [1]. This
pro cess is main tained by at tach ment and fu sion pro -
teins, which are the com po nents of vi ral en ve lope. Al -
though fu sion pro teins of dif fer ent vi ral groups are
known to be non-ho mol o gous, their struc tural
changes in the pro cess of mem brane fu sion have com -
mon fea tures, which al lows sup pos ing the com mon
con ser va tive model of the pro cess. The de scrip tion of
this model has been the ob ject of nu mer ous re views in
the re cent years [2].
It should be noted that the ma jor part of data on the
mech a nism of fu sion has been ob tained while study -
ing small en vel oped RNA-con tain ing vi ruses, spe cific
for the pres ence of one fu sion pro tein, which is suf fi -
cient for main tain ing all stages of the pro cess. Large
en vel oped DNA vi ruses are dif fer ent from small RNA
vi ruses in their or i gin and evo lu tion his tory [3]. The
pro cess of their en try into the cell is barely stud ied due
to its com pli cated na ture, al though the in volve ment of
the com plex of vi ral pro teins into the mem brane fu -
sion al lows sup pos ing that there may be dis agree ment
425
ISSN 0233-7657. Biopolymers and cell. 2007. vol. 23. N 5. Translated from Ukrainian.
Ó O. YU. REVIAKINA, I. M. KIKHNO, 2007
be tween the mech a nism of this pro cess and gen eral
par a digm.
Baculoviruses, in sect patho gens, are not in fec tious
for mam mals, which makes them a con ve nient model to
study the pro cess of pen e tra tion of large DNA vi ruses
into the cell. Baculoviruses are spe cific for lon ger evo -
lu tion ary his tory, com pared to ver te brate vi ruses, and
thus, the pro cess of their pen e tra tion into the cell is of
great in ter est due to its ar chaic char ac ter. Be sides,
some spe cific fea tures of baculoviruses al low ex pect ing
spe cial ways of en try into the cell. One of the unique
fea tures of baculoviruses is the ex is tence of two forms
of vi rus par ti cles, formed at dif fer ent stages of life cy cle
and dif fer ent in or i gin, mem brane con tents, tro pism to
dif fer ent cells, and ways of en try into the cell.
Bud ded vi rus (BV) par ti cles are formed at the
early stages of vi rus life cy cle. BV pen e trates into the
cell via endocytosis [4]. En ve lope pro tein gp64,
which pro vides at tach ment and fu sion of BV with
endosomal mem brane, is spe cific for fea tures of stan -
dard fu sion pro tein. The pro cess, main tained by this
pro tein, has com mon fea tures with that of other vi -
ruses [5], which sup poses its cor re spon dence to the
com mon model. BV par ti cles are re spon si ble for sys -
temic in fec tion of all or gans and tis sues of the in sect.
Poly he dra de rived vi rus (PDV) par ti cles are
formed at the fi nal stages of in fec tion. The name PDV
in di cates the in clu sion of the par ti cles into the pro tein
cap sule called poly he dra. PDV nucleocapsids are re -
spon si ble for pri mary in fec tion of midgut co lum nar
cells. They pen e trate into the cy to plasm via di rect fu -
sion of vi ral en ve lopes and mem branes of co lum nar
cell microvilli [6]. Nei ther the mech a nism of the pro -
cess is known, nor PDV fu sion pro tein is iden ti fied.
PDV of Autographa californica (Ac) nu clear
polyhedrosis vi rus (NPV), the most stud ied rep re sen -
ta tive of baculoviruses, in cludes circa 44 pro teins, en -
coded by the vi rus [7]. At least 4 of them were shown
to be ab so lutely re quired in the pro cess of
nucleocapsid en try into the cell – 3 per os infectivity
fac tors – pif1 [8], pif2 [9], pif3 [10], and p74 [11]. De -
le tion of genes of the men tioned pro teins re sults in the
loss of PDV infectivity. Genes of these pro teins are
pres ent in genomes of all (over 30) se quenced
baculoviruses, which pre sup poses the con ser va tive
mech a nism of PDV pen e tra tion into the cell. pif3 was
de ter mined not to par tic i pate in the pro cesses of at -
tach ment and fu sion, its role re mains un clear, whereas
pif1, pif2, p74 pro mote at tach ment [10, 12]. Au thors
of the men tioned works showed that at tach ment ef fi -
ciency of these genes de le tion mu tants is 3-fold lower
than that of wild type vi rus. At the same time the at -
tached vi rus tends to fu sion with microvillar mem -
branes, which is de tected by the
octadecyl-rhodamine-B-chlo ride (R18) flu o res cence
dequenching as say, which in au thor’s opin ion al lows
ex clud ing the pos si bil ity of di rect in volve ment of
these pro teins into the fu sion pro cess. It is yet to be
dis cov ered why at tach ment and fu sion of 1/3 of vi ral
par ti cles does not re sult in pro duc tive in fec tion.
Cur rent work is ded i cated to fur ther func tional in -
ves ti ga tion of one of the fac tors of Spodoptera
littoralis (Spli) PDV infectivity, namely pif1. Fu sion
ca pac ity of pif1 de le tion mu tant has been in ves ti gated
in in vi tro ex per i ments. The ap pli ca tion of PCR
method at tempted to an swer the ques tion – which of
the stages of vi ral cy cle is blocked by the ab sence of
this gene prod uct?
Ma te ri als and Meth ods. Vi ruses and lar vae.
Wild-type Spli NPV strain M2 and ear lier ob tained on
its ba sis plaque iso late Spli D4 with de le tion of pif1
were used [8]. Spli lar vae of dif fer ent age, grown and
ar ti fi cially fed in insectarium were used for ex per i -
ments. Lar vae were in fected by feed ing them with
poly he dra sus pen sion or pu ri fied PDV in 10% su crose.
Pu ri fi ca tion of poly he dra and PDV par ti cles.
Poly he dra and PDV par ti cles were pu ri fied ac cord ing
to the pro ce dure, de scribed by Braunagel et al. [13].
40 g of dead lar vae were ho mogen ised in 100 ml of
0.1% SDS so lu tion, ho mog e nate was fil tered sev eral
times through the cot ton tis sue. Poly he dra were pre -
cip i tated by centrifugation at 6 000 rpm for 10 min.
Pel let was re sus pend ed in 0.15 M NaCl so lu tion and
cen tri fuged once more at the same con di tions. Pel let
was re sus pend ed in wa ter and then lay ered onto
50–60% su crose–TE gra di ent. Af ter 1-hour
centrifugation at 25 000 rpm, poly he dra, lo cated on
interphase, were col lected. The sus pen sion was di -
luted sev eral times with wa ter and poly he dra were
pelleted at 10 000 rpm for 20 min. Ob tained pel let was
re sus pend ed in wa ter to fi nal con cen tra tion of 5·109
poly he dra per 1 ml.
REVIAKINA O. YU., KIKHNO I. M.
426
PDV were re leased from poly he dra by al ka line
treat ment. 900 ml of sus pen sion were mixed with 300
ml of 0.2 M Na2CO3 and in cu bated for 15 min at room
tem per a ture. Sus pen sion was neu tral ised with 0.1 M
of tris-HCl, pH 7.4. In sol u ble poly he dra were elim i -
nated by centrifugation at 5 000 rpm for 5 min per -
formed in Eppendorf cen tri fuge. Supernatant was lay -
ered onto 20–60% su crose–TE gra di ent. Af ter 1 hour
centrifugation at 90 000 g a band, con tain ing PDV par -
ti cles, at the interphase was re moved. PDV sus pen -
sion was di luted 3–4 times with wa ter and vi ral par ti -
cles were pelleted at 90 000 g for 30 min. The pel let
was care fully re sus pend ed in cold PBS buffer (137
mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1 mM
KH2O4, pH 7.4).
PDV quan tity was cal cu lated us ing Volkman cri te -
ria [14], which states that 1 mg of vi ral pro teins cor re -
sponds to 1.8·109 PDV. PDV pro teins con cen tra tion
was de ter mined us ing BSA as say kit (Pierse, USA)
ac cord ing to the man u fac turer’s in struc tion.
Flu o res cent la bel ling of PDV par ti cles. Flu o res -
cent la bel R18 was in tro duced into mem brane ac cord -
ing to the method de scribed in [15]. 7 ml of R18 eth a -
nol so lu tion (1 mg/ml) were added to 500 ml of PDV
sus pen sion, con tain ing 1 mg/ml of vi ral pro teins. The
sam ple was in cu bated in dark room at room tem per a -
ture for 1 hour, di luted 3 times with PBS buffer and
pelleted in Eppendorf cen tri fuge at the max i mal speed
for 30 min at 4°C. PDV were washed twice in three
vol umes of PBS, pel let of la belled PDV was sus -
pended in 500 ml of PBS.
Mem brane ves i cle iso la tion from in sect midgut
cells. Midguts of 7-day-old lar vae were iso lated us ing
microsurgical tools and mag ni fy ing glass, and then
treated ac cord ing to the method, de scribed in [16].
500 mg of midgut tis sue prep a ra tion were ho mogen -
ised on ice in 200 ml of buffer A (300 mM mannitol, 5
mM EDTA, 17 mM tris-HCl, pH 7.5) with ad di tion of
pro te ase in hib i tor cock tail (Promega, USA) in
Eppendorf vial us ing pes tle and then nee dles of dif fer -
ent di am e ter (23–26 G). Then 4.5 ml of buffer A with
pro te ase in hib i tors and 4.5 ml of 24 mM MgCl2 were
added with sub se quent in cu ba tion of ho mog e nate on
ice for 15 min. Ho mog e nate was cen tri fuged at 5 000
rpm for 15 min at 4°C. Supernatant was re moved and
cen tri fuged at 19 000 rpm for 30 min at 4°C. The pel -
let was re sus pend ed in the same vol ume of buffer A
and MgCl2 and then the pro ce dure of high-speed
centrifugation was re peated. Ob tained pel let of mem -
brane ves i cles was re sus pend ed in small vol ume of
PBS buffer.
Mon i tor ing of mem brane fu sion. Fu sion of vi ral
and cell mem branes was reg is tered as ear lier de scribed
for Ac NPV [17], ac cord ing to the method, based on
flu o res cence dequenching as say of R18, in cor po rated
into vi ral mem brane in the con cen tra tion lead ing to
“self-quench ing” of flu o res cence [18]. 10 ml of mem -
brane ves i cle sus pen sion (1 mg/ml) were mixed with
dif fer ent amounts of M2 or D4 PDV (from 1·109 to
1·1010), sam ple vol umes were ad justed to 200 ml by
PBS buffer. The sam ples were in cu bated in dark room
at 27°C for 4 hours, with pe ri odic shak ing. Then each
sam ple vol ume was ad justed to 1 ml by PBS buffer
and in ten sity of flu o res cence was mea sured us ing
Cary eclipse spectrofluorimeter (Varian, USA), ex ci -
ta tion wave length 560 nm and emis sion wave length
590 nm. In ten sity of flu o res cence for each sam ple was
mea sured one more time af ter ad di tion of tri ton X-100
to fi nal con cen tra tion of 1%. Flu o res cence
dequenching per cent age was cal cu lated us ing stan -
dard for mula:
dequenching % = 100·(Fs – F0) / (Ft – F0),
where Fs – flu o res cence in ten sity of sam ple; F0 –
flu o res cence in ten sity of la beled PDV; Ft – flu o res -
cence in ten sity of sam ple af ter ad di tion of tri ton X-100.
Iso la tion of RNA from midgut cells. Midgut tis sue
cells, iso lated from in fected lar vae, were used as the
source RNA. RNAs were iso lated us ing RNA easy
Pro tect mini kit (Qiagen, USA) ac cord ing to the man -
u fac turer’s in struc tion.
Am pli fi ca tion of egt gene re gion us ing RT-PCR.
RNA prep a ra tions, iso lated from midguts of in fected
lar vae, were used to ob tain cDNA gene cop ies us ing
re verse tran scrip tase. The fol low ing prim ers, ho mol o -
gous to N-ter mi nal re gion of Spli NPV egt gene, were
used in PCR: di rect – TCACAGTCTGGTGGT and re -
verse –CGCTGAGACCTTTGA. Re ac tions of re -
verse tran scrip tion and am pli fi ca tion were car ried out
us ing One Step RT-PCR kit (Qiagen) in ac cor dance to
the man u fac turer’s in struc tions.
A ROLE OF SPODOPTERA LITTORALIS NU CLEAR POLYHEDROSIS VI RUS EN VE LOPE PRO TEIN PIF1
427
Re sults and Dis cus sion. In ves ti ga tion of fu sion
ki net ics of Spli M2 and D4 PDV with mem branes of
midgut co lum nar cells. Flu o res cence dequenching as -
say of R18 is widely used in study ing of mem brane fu -
sion. This as say is based on the fact that in cor po ra tion
of fluorochrome mol e cules R18 into mem brane lipid
bilayer in cer tain con cen tra tion re sults in the ef fect of
flu o res cence “self-quench ing”, caused by the in ter ac -
tion of neigh bour ing mol e cules. The fu sion of la -
belled and non-la belled mem branes leads to re dis tri -
bu tion of R18 be tween do nor and re cip i ent mem -
branes, which re sults in “di lu tion” of the la bel,
de crease in its con cen tra tion and, con se quently, in flu -
o res cence in ten sity de crease.
Flu o res cence dequenching, reg is tered by
spectrofluorimeter, was used to study the fu sion ki net -
ics of la belled PDV par ti cles with mem brane ves i cles,
iso lated from in sect midgut cells.
Dif fer ent amounts of R18-la belled vi ral par ti cles
were in cu bated in the mix ture with 10 µg of mem brane
ves i cles for 4 hours at 27°C. The in crease in PDV M2
amount from 1•109 to 8•109 was ac com pa nied by pro -
por tional in crease in mem brane fu sion per cent age, de -
tected as in crease in flu o res cence dequenching from
11 to 88% re spec tively (Fig ure 1). Fur ther in crease in
PDV amount to 1•1010 re sults in in sig nif i cant pla teau
in crease of flu o res cence dequenching to 95%, which
ev i dences to sat u ra tion. Sim i lar ten dency to in crease
in flu o res cence dequenching due to the in crease in vi -
ral par ti cle amount has been ob served for PDV D4 as
well, which con firms the fact of mem brane fu sion of
de le tion mu tant en ve lope with mem brane ves i cles. At
the same time it took al most 2.5 times more vi ral par ti -
cles, com par ing to wild type vi rus, to achieve the same
level of flu o res cence dequenching. As it has been
men tioned above, in ves ti ga tion of pif1 on mod els of
Spli NPV and Ac NPV re vealed phenotypic man i fes ta -
tion of these genes to be equal in both vi ruses, i.e. their
de le tion re sults in the loss of in fec tion ca pa bil ity by
PDV [8, 10].
Cur rent pa per re veals that de le tion of this gene
does not im pede the fu sion of Spli NVP and cell mem -
brane, which is in good cor re la tion with the data on Ac
NVP [10]. The au thors of the lat ter work showed that
flu o res cence dequenching per cent age dur ing fu sion of
de le tion mu tant Ac NVP with cell mem branes is re -
duced three times, com pared to wild type vi rus. This
fact is ex plained by three time de crease in num ber of
mu tant vi ral par ti cles, at tached to the microvilli. We
have not stud ied ef fi ciency of at tach ment of Spli to
mem branes, as it has been per formed for Ac NVP, yet
it is pos si ble to sup pose that fu sion ef fi ciency of D4
PDV, which is 2.4 times lower com pared to M2, can
be con sid ered as the re sult of de creased ef fi ciency of
this vi rus at tach ment. There fore, Spli NVP pif1can be
con sid ered as func tional an a logue of pif1 Ac NVP,
REVIAKINA O. YU., KIKHNO I. M.
428
Fig.1 De pend ence of flu o res cence
dequenching per cent age on the amounts
of PDV par ti cles: 1 – M2 PDV; 2 – D4
PDV. In creas ing num ber of la beled R18
PDV M2 or PDV D4 was mixed with 10
mg of mem brane ves i cles and incubated
for 4 hours at 27°C.
namely at tach ment fac tor. It is also ev i denced in di -
rectly by ab so lute con ser va tism of four PDV en try
pro teins, which pre sup poses sin gu lar mech a nism of
pen e tra tion, as the com mon mech a nism re quires func -
tional con ser va tism of its per form ers.
In ves ti ga tion of PDV DNA pres ence in the nu clei
of in fected midgut cells. As de le tion mu tants, not so
ef fi ciently, yet were at tached and fused with the cell
mem branes, while in fec tion was blocked, it can be
sup posed that, along with the func tion of at tach ment,
pif1 par tic i pates in the ini ti a tion of other pro cesses of
vi ral life cy cle. It is sup posed the o ret i cally that the
func tion of pif1 is the main te nance of some stages of
in fec tion, fol low ing the fu sion of mem branes, namely,
pen e tra tion of nucleocapsid into cy to plasm of
microvillus, trans port to the nu cleus, over com ing of
vi ral DNA bar rier of nu clear mem brane, DNA rep li ca -
tion, tran scrip tion and trans la tion of vi ral genes, for -
ma tion of nucleocapsid, and with drawal of
nucleocapsids from the cell. Par tic i pa tion of pif1 in
the fol low ing events is un likely, as BV par ti cles with
de leted pif1, in jected into the in sect haemolimph, re -
sult in nor mal in fec tion pro cess [8].
The facts that pro mot ers of early baculoviral genes
are rec og nized by en zy matic sys tems of host cells and
that tran scrip tion of these genes is per formed by host
DNA-poly mer ase are com monly known. Early pro -
mot ers func tion af ter transfection in the in sect cell and
do not re quire any prod ucts of vi ral genes for main -
tain ing their ac tiv ity [19, 20]. On the ba sis of the
abovementioned data on specificities of early
baculoviral pro mot ers, we put for ward the sup po si tion
that the ab sence of tran scripts of early baculoviral
gene in the nu cleus of midgut cells may tes tify to the
ab sence of vi ral DNA in the nu cleus.
To ver ify the pres ence of vi ral DNA in the nu cleus
of in fected cell we car ried out the fol low ing ex per i -
ment: 6-day-old Spli NPV lar vae were in fected by
feed ing with high con cen trated sus pen sion of Spli
NPV M2 or D4 poly he dra (3·109 poly he dra in 1 ml).
In 7 hours af ter in fec tion, in sects were de cap i tated,
midguts were re moved and re leased from their con -
tents. To tal RNA was iso lated from midguts. cDNA
pool of ma trix RNA has been ob tained us ing re verse
tran scrip tase on the ba sis of these sam ples. Re ac tion
of am pli fi ca tion us ing the prim ers, ho mol o gous to
N-ter mi nal re gion of early egt gene, was used as the
ev i dence of pres ence/ab sence of cDNA gene copy in
the in ves ti gated sam ples. Pos i tive re sult was reg is -
tered dur ing re ac tion of am pli fi ca tion us ing cDNA
sam ples of in sects, in fected with M2 (Fig ure 2). Re it -
er ated PCR us ing D4-in fected in sects cDNAs re -
vealed the ab sence of egt RNA in them. The re sults
ob tained re veal that DNA vi rus with de leted pif1 gene
does not reach the nu cleus. Thus, it is pos si ble to con -
clude that func tion of pif1 is to main tain the stages of
in fec tion, pre ced ing the vi ral DNA en try into the nu -
cleus, sup pos edly nucleocapsid nto cy to plasm of
microvillus, trans port to the nu cleus or vi ral DNA
pen e tra tion into the nu cleus.
As pif1 is known to be long to en ve lope pro teins,
and not a nucleocapsid com po nent, it is hard to sup -
pose its di rect par tic i pa tion in trans port or re lease of
DNA. In this case it can be sup posed that pif1, at -
tached to spe cific re cep tors, is ca pa ble of switch ing
cell sig nal ing path ways, pro vid ing the ex e cu tion of
given func tions [10]. This hy poth e sis is sup ported by
Okhawa et al., who point out the fact that amino acid
se quence of Ac NVP pif1 con tains RGD-mo tif, spe -
cific to pro tein-lig ands of integrins (as integrins are
the transductors of extracellular sig nals). Not dis put -
ing with the pos si bil ity of sig nal transduction in the
cell via pif1, we would like to pay spe cial at ten tion to
the pres ence of mo tif in amino acid se quence as nec es -
sary but in suf fi cient fac tor to judge about the func tion -
al ity of this mo tif. Ad di tional con fir ma tion to func -
tional sig nif i cance of the mo tif is its con ser va tion in
pro tein homo logues. At the mo ment, there are pif1
aminoacid se quences of over 30 baculoviruses, avail -
able in the Gene Bank da ta base. Their anal y sis re -
vealed the ab sence of con ser va tive RGD-mo tif.
Amino acid se quence of Spli NVP pif1does not con -
tain this mo tif at all, which casts doubts on its func -
tional sig nif i cance in Ac NVP as well. Con tin u ing the
dis cus sion with Okhawa et al. we would like to un der -
line the in abil ity of cross ing out of fu sion func tion
from the list of pos si ble pif1 func tions. We found it
pos si ble to sup pose that pif1 may be di rect per former
of the mem brane fu sion pro cess. Mod ern fu sion par a -
digm, ap pli ca ble for both ar ti fi cial lipid bilayers and
pro tein-con tain ing bi o log i cal mem branes, sug gests
the pres ence of sev eral stages of this pro cess [21].
A ROLE OF SPODOPTERA LITTORALIS NU CLEAR POLYHEDROSIS VI RUS EN VE LOPE PRO TEIN PIF1
429
One of the im por tant stages of the pro cess is the state
of semi-fu sion, which is char ac ter ized by mix ing of
ex ter nal lay ers of re cip i ent and tar get mem branes,
whereas in ter nal lay ers re main in tact. The sub se quent
state of in ter nal lay ers mix ing re sults in com plete fu -
sion, fu sion pore for ma tion and mix ing of wa ter con -
tents of two com part ments, up to that mo ment sep a -
rated by mem branes. It is also im por tant that flu o res -
cence dequenching of R18 al lows de tect ing
dis tri bu tion of fluorochrome be tween lipids of do nor
and re cip i ent mem branes, at the same time it is im pos -
si ble to de ter mine whether com plete or in com plete
mem brane fu sion re flects this pro cess. To dif fer en ti -
ate these stages, dis tri bu tion anal y sis of their wa -
ter-sol u ble com po nents is used along with study on
dis tri bu tion of liposoluble com po nents [22]. In the
frames of cur rent model of fu sion the pres ence of one
fu sion pro tein is suf fi cient for main tain ing of all
stages of pro cess, thus, pif1 can not be con sid ered as a
can di date for the role of fu sion pro tein. How ever, the
lat est data, ob tained in the in ves ti ga tion of her pes vi -
ruses, al low sup pos ing that the me chan ics of fu sion in
com plex DNA-con tain ing vi ruses may be dif fer ent
from the de scribed one.
In her pes vi ruses fu sion is pro vided by the com -
plex of four con ser va tive pro teins, namely gD, gH,
gL, and gB, act ing con sec u tively, i.e. gD is at tach ment
pro tein, gHL com plex pro vides semi-fu sion, and gB
com pletes the pro cess of fu sion, which re sults in the
pore for ma tion [23]. Sim i larly to her pes vi ruses it is
pos si ble to sup pose that in com plete fu sion may be the
ob sta cle for the pen e tra tion of nucleocapsid into the
cell, and pif1 is the per former, or one of the per form -
ers, of the pro cess of com plete fu sion. It is worth men -
tion ing that though fu sion of her pes vi ruses is per -
formed by a harder scheme, gen eral fea tures of pro -
teins of the com plex are the same as for all fu sion
pro teins. One of these fea tures is the pres ence of
glycosylation. Un like all other known fu sion pro teins,
pif1 is non-glycosylated [8], which casts doubts on its
func tion as fu sion pro tein. How ever, there are ev i -
dences that glycoproteins are not in volved into the
pro cess of PDV fu sion.
The treat ment of in fected cells with tunicamycine
usu ally re sults in the ab sence or sig nif i cant de crease in
infectivity of vi rus, ob tained from these cells, as
tunicamycine in ter feres with the pro cess of
glycosylation of fu sion pro teins. Whereas it is jus ti -
fied for BV [24], treat ment with tunicamycine does
not in flu ence infectivity of PDV [25]. More over,
some de tails of PDV fu sion pro cess are dif fer ent from
those of other vi ruses. For all in ves ti gated vi ruses di -
rect fu sion of vi ral and cell mem branes is pH-in de -
pend ent. Ef fi ciency of PDV fu sion in creases with in -
creas ing pH value, reach ing its max i mum at pH 9–11
[17]. For all known vi ruses the de crease of tem per a -
ture to 4°C is com monly ac cepted method of fu sion
block ing, yet such a tem per a ture is per mis sive for
PDV fu sion with microvillus mem branes [17].
The abovementioned facts ev i dence to the fact that
the study on PDV pen e tra tion into the cell will al low
dis cov er ing the un known mech a nisms of this pro cess,
main tained by the com plex of new type of fu sion pro -
tein(s).
Fur ther in ves ti ga tion on pro cess of PDV in fec tion
by elec tron mi cros copy as well as mon i tor ing of de -
gree of mem brane fu sion us ing wa ter-sol u ble dyes
will en able to ei ther con firm or re ject the hy poth e sis
on pif1 be long ing to new type of fu sion pro teins.
REVIAKINA O. YU., KIKHNO I. M.
430
Fig.2 Elec tro pho retic anal y sis of prod ucts of am pli fi ca tion of
cDNA cop ies of RNA, iso lated from midguts of in fected lar vae: 1 –
marker 1 kb (Fermentas); 2 – pos i tive con trol (am pli fi ca tion of pu -
ri fied DNA Spli M2); 3, 4 – in sects, in fected with PDV M2; 5, 6 – in -
sects, in fected with PDVD4.
Î. Þ. Ðåâÿêèíà, È. Ì. Êèõíî
Ðîëü áåëêà pif1 îáîëî÷êè âèðóñà ÿäåðíîãî ïîëèýäðîçà
Spodoptera littoralis â ïðîöåññå ïðîíèêíîâåíèÿ âèðóñà â êëåòêó
Ðåçþìå
Èññëåäîâàëè ðîëü pif1 – áåëêà îáîëî÷êè âèðóñà ÿäåðíîãî
ïîëèýäðîçà S. littoralis â ïðîöåññå ïðîíèêíîâåíèÿ âèðóñà â
êîëîí÷àòóþ êëåòêó êèøå÷íèêà íàñåêîìîãî. Ïîêàçàíî, ÷òî
äåëåòèðîâàíèå pif1 èç âèðóñíîãî ãåíîìà íå áëîêèðóåò ïðîöåññ
ñëèÿíèÿ âèðóñíîé è êëåòî÷íîé ìåìáðàí, äåòåêòèðóåìîãî
ìåòîäîì âîññòàíîâëåíèÿ ôëóîðåñöåíöèè
îêòàäåöèë-ðîäàìèí-Â-õëîðèäà. Ñ ïðèâëå÷åíèåì òåõíèêè
ÎÒ-ÏÖÐ ïîêàçàíî, ÷òî ôóíêöèåé pif1 ÿâëÿåòñÿ îáñëóæèâàíèå
îäíîãî èëè íåñêîëüêèõ ýòàïîâ æèçíåííîãî öèêëà âèðóñà,
ïðåäøåñòâóþùèõ ïðîíèêíîâåíèþ âèðóñíîé ÄÍÊ â ÿäðî,
ïðåäïîëîæèòåëüíî òàêèõ, êàê èíòåðíàëèçàöèÿ íóêëåîêàïñèäà,
åãî òðàíñïîðòèðîâêà, îñâîáîæäåíèå âèðóñíîé ÄÍÊ èç êàïñèäà
è åå âíåäðåíèå â ÿäðî.
Êëþ÷åâûå ñëîâà: ïðîíèêíîâåíèå âèðóñà â êëåòêó,
áàêóëîâèðóñ, pif1.
REFERENCES
1. Hernandez L. D., Hoffman L. R., Wolfsberg T. G., White J. M.
Virus-cell and cell-cell fusion // Ann. Rev. Cell Develop.
Biol.–1996.–12.–P. 627–661.
2. Earp L. J., Delos S. E., Park H. E., White J. M. The many
mechanisms of viral membrane fusion proteins // Curr. Top.
Microbiol. and Immunol.–2005.–285.–P. 25–66.
3. Shackelton L. A., Holmes E. The evolution of large DNA
viruses: combining genomic information of viruses and their
hosts // TRENDS Microbiol.–2004.–12.–P. 458–465.
4. Blissard G. W., Wenz J. R. Baculovirus gp64 envelope
glycoprotein is sufficient to mediate pH-dependent
membrane fusion // J. Virol.–1992.–66.–P. 6829–6835.
5. Marcovic I., Pulyaeva H., Sokoloff A., Chernomordic L. V.
Membrane fusion mediated by baculovirus gp64 involves
assembly of stable gp64 trimers into multiprotein aggregates
// J. Cell Biol.–1998.–143.–P.1155–1156.
6. Granados R. R., Lawler K. A. In vivo pathway of Autographa
californica baculovirus invasion and infection //
Virology.–1981.–108.– P. 297–308.
7. Braunagel S. C., Russell W. K., Rosas-Acosta G., Russell D.
H., Summers M. D. Determination of the protein composition
of the occlusion-derived virus of Autographa californica
nucleopolyhedrovirus // Proc. Nat. Acad. Sci. USA.–2003.–
100.–P. 9797–9802.
8. Kikhno I., Gutierrez S., Croizier L., Croizier G., Ferber L. M.
Characterization of pif, a gene required for per os infectivity
of Spodoptera littoralis nucleopolyhedrovirus // J. Gen.
Virol.–2002.– 83.–P. 3013–3022.
9. Pijlman G. P., Pruijssers A. J. P., Vlak J. M. Identification of
pif-2, a third conserved baculovirus gene required for per os
infection of insects // J. Gen. Virol.–2003.–84.–P. 2041–
2049.
10. Ohkawa T., Washburn J. O., Sitapara R., Sid E., Volkman L.
E. Specific binding of Autographa californica M
nucleopolyhedrovirus occlusion-derived virus to midgut
cells of Heliothis virescens larvae is mediated by products of
pif genes Ac119 and Ac022 but not by Ac115 // J. Virol.–
2005.–79.–P. 15258–15264.
11. Kuzio J., Jacques R., Faulkner P. Identification of p74, a
gene essential for virulence of baculovirus occlusion bodies //
Virology.–1989.–173.– P. 759–763.
12. Haas-Stapleton E. J., Washburn J. O., Volkman L. E. P74
mediated specific binding of Autographa californica M
nucleopolyhedrovirus occlusion-derived virus to primary
cellular targets in the midgut epithelia of Heliothis virescens
larvae // J. Virol.–2004.–78.–P. 6786–6791.
13. Braunagel S. C., Summers M. D. Autographa californica
nuclear polyhedrosis virus, PDV, and ECV viral envelopes
and nucleocapsids: structural proteins, antigens, lipid and
fatty acid profiles // Virology.–1994.–202.–P. 315–328.
14. Volkman L. E., Summers M. D., Hsieh C. H. Occluded and
nonoccluded nuclear polyhedrosis virus grown in
Trichoplusia ni: comparative neutralization comparative
infectivity, and in vitro growth studies // J. Virol.–
1976.–1.–P. 820–832.
15. Boyyad A., Menezes J. Comparative study of herpes simplex
virus receptor expression on human lymphoid cells //
Virology.–1990.–179.–P. 905–910.
16. Wolfersberger M., Luethy P., Parenti P., Sacci F. V.,
Giordana B., Hanoret G. M. Preparation and partial
characterization of amino acid transporting brush border
membrane vesicles from the larvae midgut of the cabbage
butterfly (Pieris brassicae) // Comp. Biochem. and
Physiol.–1987.–86.– P. 301–308.
17. Horton H. M., Burand J. P. Saturable attachment sites for
polyhedron-derived baculovirus of insect cells and evidence
for entry via direct membrane fusion // J. Virol.–1993.–
67.–P. 1860–1868.
18. Srinivasakumar N., Ogra P. L., Flanagan T. D.
Characteristics of fusion of respiratory syncytial virus with
HEp-2 cells as measured by R18 fluorescence dequenching
assay // J. Virol.–1991.–65.–P. 4063–4069.
19. O’Reilly D. R., Miller L. K. Regulation of expression of a
baculovirus ecdysteroid UDP glucosyltransferase gene // J.
Virol.–1990.–64.–P. 1321–1328.
20. Kogan P. H., Blissard G. W. A baculovirus gp64 early
promoter is activated by host transcription factor binding to
CACGTG and GATA elements // J. Virol.–1994.–68.–
P. 813–822.
21.Chernomordic L. V., Zimmerberg J., Kozlov M. M.
Membranes of the world unite! // J. Cell Biol.–2006.–175.–
P. 201–207.
22. Melikyan G. B., White J. M., Cohen F. GPI-anchored
influenza hemagglutinin induced hemifusion of both red
blood cell and planar bilayer membranes // J. Cell Biol.–
1995.–131.–P. 679–691.
23. Subramanian R. P., Geraghty R. J. Herpes simplex virus type
1 mediates fusion through a hemifusion intermediates by
sequential activity of glycoprotein D, H, L, and B // Proc. Nat.
Acad. Sci. USA.–2007.–104.–P. 2903–2908.
24. Charlton C. A., Volkman L. E. Effect of tunicamycin on the
structural proteins and infectivity of budded Autographa
A ROLE OF SPODOPTERA LITTORALIS NU CLEAR POLYHEDROSIS VI RUS EN VE LOPE PRO TEIN PIF1
431
californica nuclear polyhedrosis virus // Virology.– 1986.–
154.–P. 214–218.
25. Kelly D. C., Lescott T. Baculovirus replication: glycosylation
of polypeptides synthesized in Trichoplusia ni nuclear
polyhedrosis virus-infected cells and the effect of
tunicamycin // J. Gen. Virol.–1983.– 64.–P. 1915–1926.
UDC 578.841:578.23.3
Recieved 06.04.07
432
REVIAKINA O. YU., KIKHNO I. M.
|