Дослідження інфрачервоного спектра молекули Fe(II)-порфіну в різних спінових станах квантово-хімічним методом функціоналу густини

Квантово-хімічним методом теорії функціоналу густини розраховано інфрачервоний (ІЧ) спектр поглинання молекули Fe(ІІ)-порфіну для синглетного, триплетного та квінтетного спінових станів. Для оптимізації геометрії і розрахунку ІЧ спектра молекули використано необмежений за спіном функціонал UB3LYP у...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Біополімери і клітина
Дата:2007
Автори: Мінаєв, Б.П., Мінаєв, О.Б., Говорун, Д.М.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут молекулярної біології і генетики НАН України 2007
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/157522
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Дослідження інфрачервоного спектра молекули Fe(II)-порфіну в різних спінових станах квантово-хімічним методом функціоналу густини / Б.П. Мінаєв, О.Б. Мінаєв, Д.М. Говорун // Біополімери і клітина. — 2007. — Т. 23, № 6. — С. 519-528. — Бібліогр.: 21 назв. — укр., англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-157522
record_format dspace
spelling Мінаєв, Б.П.
Мінаєв, О.Б.
Говорун, Д.М.
2019-06-20T04:20:18Z
2019-06-20T04:20:18Z
2007
Дослідження інфрачервоного спектра молекули Fe(II)-порфіну в різних спінових станах квантово-хімічним методом функціоналу густини / Б.П. Мінаєв, О.Б. Мінаєв, Д.М. Говорун // Біополімери і клітина. — 2007. — Т. 23, № 6. — С. 519-528. — Бібліогр.: 21 назв. — укр., англ.
0233-7657
DOI: http://dx.doi.org/10.7124/bc.000787
https://nasplib.isofts.kiev.ua/handle/123456789/157522
577.175.6:544.18:543.422
Квантово-хімічним методом теорії функціоналу густини розраховано інфрачервоний (ІЧ) спектр поглинання молекули Fe(ІІ)-порфіну для синглетного, триплетного та квінтетного спінових станів. Для оптимізації геометрії і розрахунку ІЧ спектра молекули використано необмежений за спіном функціонал UB3LYP у базисі 6-311G. Показано, що квінтетний стан 5В2g симетрії D₂h є основним. Для триплетного стану з низькою енергією ³A₂g і синглетного стану з високою енергією ¹A₁g , які мають симетрію D₄h, ІЧ спектри досліджено в точковій групі симетрії D₂h. Проаналізовано усі активні в ІЧ спектрі коливальні моди. У квінтетному стані низькочастотні неплощинні коливальні моди з великим зміщенням іона Fe(ІІ) мають різні інтенсивності і частотні зміщення порівняно з синглетним і триплетним станами.
The infrared (IR) absorption spectra of the Fe(II) porphin molecule (Fe(II)P) are calculated by the quantum-chemical method of density functional theory (DFT) for the singlet, triplet, and quintet spin states. The UB3LYP functional with the 6-311G basis set is used in geometry optimization and IR calculations. The quintet state ⁵B₂g of the D₂h symmetry is found to be the ground state. Though the close-lying triplet ³A₂g and high-energy singlet ¹A₁g states belong to the D₄h symmetry, the IR spectra have been analyzed in terms of the lower symmetry D₂h point group. All IR active vibrations are tabulated and discussed. The low-frequency modes with large out-of-plane displacements of Fe(II) ion have different IR intensities, normal vibrations, and frequency shifts in the quintet state in respect to the singlet and triplet states.
Квантово-химическим методом теории функционала плотности рассчитаны инфракрасные (ИК) спектры поглощения молекулы Fe(II)-порфина для синглетного, триплетного и квинтетного спиновых состояний. Для оптимизации геометрии и расчета ИК спектра использован неограниченный по спину функционал UB3LYP в базисе 6-311G. Показано, что квинтетное состояние ⁵B₂g симметрии D₂h является основным. Для триплетного состояния с низкой энергией ³A₂g и синглетного состояния с высокой энергией ¹A₁g, имеющих симметрию D₄h, ИК спектры изучены в точечной группе симметрии D₂h. Проанализированы все активные в ИК спектре колебательные моды. В квинтетном состоянии низкочастотные внеплоскостные колебательные моды с большим смещением иона Fe(II) имеют различные интенсивности и частотные сдвиги по сравнению с синглетным и триплетным состояниями.
uk
Інститут молекулярної біології і генетики НАН України
Біополімери і клітина
Молекулярна біофізика
Дослідження інфрачервоного спектра молекули Fe(II)-порфіну в різних спінових станах квантово-хімічним методом функціоналу густини
Исследование инфракрасного спектра молекулы Fe(II)-порфина в разных спиновых состояниях квантово-химическим методом функционала плотности
Investigation of infrared spectrum of Fe(II) porphin in different spin states by quantum chemical density functional theory
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Дослідження інфрачервоного спектра молекули Fe(II)-порфіну в різних спінових станах квантово-хімічним методом функціоналу густини
spellingShingle Дослідження інфрачервоного спектра молекули Fe(II)-порфіну в різних спінових станах квантово-хімічним методом функціоналу густини
Мінаєв, Б.П.
Мінаєв, О.Б.
Говорун, Д.М.
Молекулярна біофізика
title_short Дослідження інфрачервоного спектра молекули Fe(II)-порфіну в різних спінових станах квантово-хімічним методом функціоналу густини
title_full Дослідження інфрачервоного спектра молекули Fe(II)-порфіну в різних спінових станах квантово-хімічним методом функціоналу густини
title_fullStr Дослідження інфрачервоного спектра молекули Fe(II)-порфіну в різних спінових станах квантово-хімічним методом функціоналу густини
title_full_unstemmed Дослідження інфрачервоного спектра молекули Fe(II)-порфіну в різних спінових станах квантово-хімічним методом функціоналу густини
title_sort дослідження інфрачервоного спектра молекули fe(ii)-порфіну в різних спінових станах квантово-хімічним методом функціоналу густини
author Мінаєв, Б.П.
Мінаєв, О.Б.
Говорун, Д.М.
author_facet Мінаєв, Б.П.
Мінаєв, О.Б.
Говорун, Д.М.
topic Молекулярна біофізика
topic_facet Молекулярна біофізика
publishDate 2007
language Ukrainian
container_title Біополімери і клітина
publisher Інститут молекулярної біології і генетики НАН України
format Article
title_alt Исследование инфракрасного спектра молекулы Fe(II)-порфина в разных спиновых состояниях квантово-химическим методом функционала плотности
Investigation of infrared spectrum of Fe(II) porphin in different spin states by quantum chemical density functional theory
description Квантово-хімічним методом теорії функціоналу густини розраховано інфрачервоний (ІЧ) спектр поглинання молекули Fe(ІІ)-порфіну для синглетного, триплетного та квінтетного спінових станів. Для оптимізації геометрії і розрахунку ІЧ спектра молекули використано необмежений за спіном функціонал UB3LYP у базисі 6-311G. Показано, що квінтетний стан 5В2g симетрії D₂h є основним. Для триплетного стану з низькою енергією ³A₂g і синглетного стану з високою енергією ¹A₁g , які мають симетрію D₄h, ІЧ спектри досліджено в точковій групі симетрії D₂h. Проаналізовано усі активні в ІЧ спектрі коливальні моди. У квінтетному стані низькочастотні неплощинні коливальні моди з великим зміщенням іона Fe(ІІ) мають різні інтенсивності і частотні зміщення порівняно з синглетним і триплетним станами. The infrared (IR) absorption spectra of the Fe(II) porphin molecule (Fe(II)P) are calculated by the quantum-chemical method of density functional theory (DFT) for the singlet, triplet, and quintet spin states. The UB3LYP functional with the 6-311G basis set is used in geometry optimization and IR calculations. The quintet state ⁵B₂g of the D₂h symmetry is found to be the ground state. Though the close-lying triplet ³A₂g and high-energy singlet ¹A₁g states belong to the D₄h symmetry, the IR spectra have been analyzed in terms of the lower symmetry D₂h point group. All IR active vibrations are tabulated and discussed. The low-frequency modes with large out-of-plane displacements of Fe(II) ion have different IR intensities, normal vibrations, and frequency shifts in the quintet state in respect to the singlet and triplet states. Квантово-химическим методом теории функционала плотности рассчитаны инфракрасные (ИК) спектры поглощения молекулы Fe(II)-порфина для синглетного, триплетного и квинтетного спиновых состояний. Для оптимизации геометрии и расчета ИК спектра использован неограниченный по спину функционал UB3LYP в базисе 6-311G. Показано, что квинтетное состояние ⁵B₂g симметрии D₂h является основным. Для триплетного состояния с низкой энергией ³A₂g и синглетного состояния с высокой энергией ¹A₁g, имеющих симметрию D₄h, ИК спектры изучены в точечной группе симметрии D₂h. Проанализированы все активные в ИК спектре колебательные моды. В квинтетном состоянии низкочастотные внеплоскостные колебательные моды с большим смещением иона Fe(II) имеют различные интенсивности и частотные сдвиги по сравнению с синглетным и триплетным состояниями.
issn 0233-7657
url https://nasplib.isofts.kiev.ua/handle/123456789/157522
citation_txt Дослідження інфрачервоного спектра молекули Fe(II)-порфіну в різних спінових станах квантово-хімічним методом функціоналу густини / Б.П. Мінаєв, О.Б. Мінаєв, Д.М. Говорун // Біополімери і клітина. — 2007. — Т. 23, № 6. — С. 519-528. — Бібліогр.: 21 назв. — укр., англ.
work_keys_str_mv AT mínaêvbp doslídžennâínfračervonogospektramolekulifeiiporfínuvríznihspínovihstanahkvantovohímíčnimmetodomfunkcíonalugustini
AT mínaêvob doslídžennâínfračervonogospektramolekulifeiiporfínuvríznihspínovihstanahkvantovohímíčnimmetodomfunkcíonalugustini
AT govorundm doslídžennâínfračervonogospektramolekulifeiiporfínuvríznihspínovihstanahkvantovohímíčnimmetodomfunkcíonalugustini
AT mínaêvbp issledovanieinfrakrasnogospektramolekulyfeiiporfinavraznyhspinovyhsostoâniâhkvantovohimičeskimmetodomfunkcionalaplotnosti
AT mínaêvob issledovanieinfrakrasnogospektramolekulyfeiiporfinavraznyhspinovyhsostoâniâhkvantovohimičeskimmetodomfunkcionalaplotnosti
AT govorundm issledovanieinfrakrasnogospektramolekulyfeiiporfinavraznyhspinovyhsostoâniâhkvantovohimičeskimmetodomfunkcionalaplotnosti
AT mínaêvbp investigationofinfraredspectrumoffeiiporphinindifferentspinstatesbyquantumchemicaldensityfunctionaltheory
AT mínaêvob investigationofinfraredspectrumoffeiiporphinindifferentspinstatesbyquantumchemicaldensityfunctionaltheory
AT govorundm investigationofinfraredspectrumoffeiiporphinindifferentspinstatesbyquantumchemicaldensityfunctionaltheory
first_indexed 2025-11-26T23:00:31Z
last_indexed 2025-11-26T23:00:31Z
_version_ 1850779415006412800
fulltext MOLECULAR BIOPHYSICS In ves ti ga tion of in fra red spec trum of Fe(II) porphin in dif fer ent spin states by quan tum chem i cal den sity func tional theory B. F. Minaev, A. B. Minaev, D. N. Hovorun1 Cherkassy state technologikal uni ver sity Shevchenko blvd, 460, Cherkassy,18006, Ukraine 1In sti tute of mo lec u lar bi ol ogy and ge net ics NAS of Ukraine Academicain Zabolotnog str., 150, Kyiv, 03680 Ukraine bfmin@ram bler.ru The in fra red (IR) ab sorp tion spec tra of the Fe(II) porphin mol e cule (Fe(²²)P) are cal cu lated by the quan - tum-chem i cal method of den sity func tional the ory (DFT) for the sin glet, trip let, and quin tet spin states. The UB3LYP func tional with the 6-311G ba sis set is used in ge om e try op ti mi za tion and IR cal cu la tions. The quin tet state 5B 2g of the D 2h sym me try is found to be the ground state. Though the close-ly ing trip let 3À 2g and high-en ergy sin glet 1À 1g states be long to the D 4h sym me try, the IR spec tra have been an a lyzed in terms of the lower sym me try D 2h point group. All IR ac tive vi bra tions are tab u lated and dis cussed. The low-fre quency modes with large out-of-plane dis place ments of Fe(II) ion have dif fer ent IR in ten si ties, nor mal vi bra tions, and fre quency shifts in the quin tet state in re spect to the sin glet and trip let states. Keywords: Fe(II) porphin, sin glet, trip let, quin tet, spin states, den sity func tional the ory, IR ab sorp tion spec trum, low-fre quency modes In tro duc tion. The change of spin state of ac tive Fe(II) cen tre of hemoproteins is a spe cific fea ture of a num ber of en zy matic re ac tions (e.g. re ac tion which takes place in cytochrome at cam phor hydroxylation) [1, 2]. The tran si tion from low- to high-spin state (S = 2, where S is com plete spin of mol e cule) dur ing bind ing of hy dro - pho bic sub strates has a sig nif i cant in flu ence on re dox equi lib rium and en zy matic cy cle in gen eral [1]. The o - ret i cal in ves ti ga tions of these pro cesses us ing the den - sity func tional the ory (DFT) meth ods [3] have be come of ma jor im por tance in bio chem is try of hemoproteins in re cent years as they sup ply the unique in for ma tion on spin role in me tab o lism [4–7]. The re la tion be tween en ergy and spin of hemoprotein in the frame work of DFT method re vealed it to be de ter mined by dif fer ent fac tors such as DFT func tional, char ac ter of ex change ef fects, ba sis set of atomic orbitals (AO), etc [8–10], thus, the need for op ti mal DFT method, which will al - low de fin ing cor rect se quence of spin multiplets in the sim plest heme Fe(II)-porphin (Fe(II)P) model, and de - scrib ing ba sic phys i cal-chem i cal pa ram e ters of mol e - cule and the de pend ence of these pa ram e ters on elec - tronic spin within this ap proach, is the im por tant is sue of today. In Ref. [11] the cor rect se quence of Fe(II)P spin states, match ing the re sults of the most ac cu rate cal cu - la tions based on the method of con fig u ra tion in ter ac - tion (CI) [12], was ob tained on the ba sis of DFT study. Op ti mised en er gies of the sym met ri cal 1A1g and 3A2g states of D4h group were shown to be higher than the en - ergy of the quin tet state 5B2g, which cor re sponds to D2h sym me try group. 519 ISSN 0233-7657. Biopolymers and cell. 2007. vol. 23. N 6. Translated from Ukrainian. Ó B. F. MINAEV, A. B. MINAEV, D. N. HOVORUN, 2007 The con nec tion be tween Fe(II)P spin and the force field of all at oms of the mol e cule re quires ap pro pri ate de scrip tion, as fre quency of vi bra tions pro vide not only the way to ex per i men tal val i da tion us ing IR and Raman spec tra, but also de ter mine the re ac tiv ity of hemoproteins dur ing their in ter ac tion with lig ands. Cur rent work pres ents the in ves ti ga tion of the IR spec trum of Fe(II)P in dif fer ent spin states (sin glet (S), trip let (T), quin tet (Q)) us ing the DFT method. Spe cial em pha sis is put on the anal y sis of forms of vi bra tion modes with high dis place ment am pli tude of the Fe(II) ion, as this shift is known to be the cen tral as pect of func tion ally im por tant dy nam ics of hemoproteins. Ma te ri als and Meth ods. The meth ods, pre vi ously used for solv ing the prob lem of vi bra tions, are based on em piric se lec tion of force field for the known va lence vi bra tions of pyrrol rings [13–15]. At the same time the out-of-place vi bra tions were not in ves ti gated at all, as it is ex tremely hard to de ter mine cor re spond ing force con stants for the whole porphin macrocycle. Quan - tum-chem i cal meth ods of DFT, based on the ap pli ca - tion of elec tronic den sity func tional for eval u a tion of en ergy, and, con se quently, force con stants, al lowed cal cu lat ing IR and Raman spec tra of many porphins on the ba sis of one the o ret i cal ap proach [8, 10, 16–18]. To cal cu late equi lib rium ge om e try, elec tronic struc ture, and IR spec trum of Fe(II)P mol e cule we used method of DFT at the B3LYP level of the ory with ex tended AO-ba sis set (6-311G) [3]. Com plete op ti mi sa tion of ge om e try was per formed for all spin states of FeP. The Hessian ma trixes were cal cu lated and all real fre quen cies of nor mal vi bra tions were ob tained for all sta tion ary points. In ten sity of IR spec tra was cal cu lated us ing de riv a tives of mo lec u lar di pole mo ment. All cal cu la tions were per formed us ing GAUSSI AN-03 soft ware [19] in Lab o ra tory of The o - ret i cal Chem is try of Stock holm Cen ter for Phys ics, As - tron omy, and Bio tech nol ogy (SCFAB). Re li able ex per i men tal Fe(II)P IR spec tra are not pres ent in lit er a ture due to fast ox i da tion of Fe(II)P to Fe(III)P. More over, the prep a ra tion of crys tal sam ples in cludes the ap pear ance of com plexes of dif fer ent spin states [19], thus the re sults of our work were com pared to the re sults of cal cu la tion of porphin mol e cule (H2P) in the same and in ap prox i mate 6-31G** bases [10], and with the re sults of cal cu la tion of mag ne - sium-porphin (MgP) and zinc-porphin (ZnP) com - plexes in B3LYP/6-31G* method, which are spe cific for the pres ence of re li able ex per i men tal data on vi bra - tions in IR spec tra [10]. Com par a tive anal y sis al lowed eval u at ing the val ues of zoom mul ti pli ers, which amount to 0.97 for va lence vi bra tions of C–N, C–C bonds and to 0.96 for C–H bonds, while for va lence vi - bra tions of Fe–N bonds with sig nif i cant dis place ment of Fe(II) ions it amounts to 0.98, for fre quen cies of deformational out-of-plane vi bra tions with out dis - place ments of Fe(II) ions it is equal to 0.975. Un for tu nately, ex per i men tal data for low-fre - quency vi bra tions (n » 400 cm–1) in IR spec tra of metal com plexes MgP and ZnP are not known, there fore, zoom mul ti plier of this part of spec trum was not eval u - ated. Re sults and Dis cus sion. Nu mer a tion of at oms and se lec tion of axes in Fe(II)P mol e cule are pre sented in Fig.1. Tra di tional mark ing sys tem [13] was used for re - view ing ge om e try and elec tronic struc ture of the mol e - cule, i.e. the car bon at oms in a-po si tions – Ca, in b-po - si tions – Cb, in meso po si tion of macrocycle (meth ane MINAEV B. F., MINAEV A. B., HOVORUN D. N. 520 Fig.1 Mark ing of at oms and se lec tion of axes in Fe(II)P mol e cule bridges) – Cm. Pyrrol rings are marked by Ro man nu - mer als I–IV, po si tion of bridge car bonic at oms (meso po si tion) are marked by Greek let ters a, b, g, d. At oms of pyrrol rings with N35 and N36 num bers are marked by ac cent (Ca¢, Cb¢) in or der to avoid am bi gu ity while com - par ing sin glet and trip let elec tronic states of Fe(II)P mol e cule, be long ing to the point groups of sym me try D4h, with the quin tet state (D2h group). Tak ing into ac count the data in Ta ble 1, which pres - ents the cor re la tions of sym me try of vi bra tion modes in the point groups D4h and D2h, the nor mal vi bra tions of Fe(II)P mol e cule in sin glet and trip let states in group D4h are clas si fied ac cord ing to the type of sym me try, i.e. 6 a2u, 4 b2u, 3 a1u, 5 b1u, 16 eg – out-of-plane vi bra tions; 36 eu, 9 a1g, 9 b1g, 9 b2g, 8 a2g – in-plane vi bra tions. l Vi bra tions of the b1u, b2u, and b3u sym me try in the point group D2h are spe cific to IR spec trum, while vi bra - tions ag, b1g, b2g, b3g are ac tive in Raman spec tra and vibronic spec tra. Group D4h is spe cific for al lowed vi - bra tions of a2u, e2u, while vi bra tions of b2u type are for - bid den in IR spec tra, due to the fact that the point group D2h is only a D4h sub-group. Thus in the IR spec tra of Fe(II)P in sin glet and trip let states the num ber of al - lowed vi bra tions of out-of-plane vi bra tional modes is de creased by 4. The cal cu la tions of vi bra tional fre quen cies and nor - mal modes of Fe(II)P mol e cule in dif fer ent spin elec - tronic states (1Ag, 3B1g, 5B2g) re vealed the pres ence of only five vi bra tional modes with large Fe(II) ion dis - place ments, three of which are out-of-plane dis place - ments. Dis place ments of Fe(II) ion (a.u.) along Oz axis which fit into in her ent vec tor lay out for nor mal vi bra - tions are pre sented in Ta ble 2. One more vi bra tional mode (11) with large dis place ment of Fe(II) ion (–0.15 a.u.) is ob tained in the quin tet state, whereas in sin glet and trip let states in this vi bra tional mode the dis place - ment of Fe(II) ion has not been ob served. The range of 0–426 cm–1 is spe cific for out-of-plane nor mal vi bra tions with large dis place ments of Fe(II) ion along Oz axis and low-in ten sity de gen er ate skel e tal plane vi bra tions, in volv ing Fe–N bonds with dif fer ent dis place ments of Fe(II) ion (Ta ble 2, 3), as well as for swing ing of the porphin skel e ton, pul sa tion, and twist - ing of pyrrol rings (Ta ble 3 pres ents all cal cu lated fre - quen cies of nor mal vi bra tions re gard less of zoom mul - ti plier). Out-of-plane vi bra tion mode 2 and the mode 1 in S and T states are pro hib ited by sym me try for IR ab sorp - tion of quanta, in quin tet state mode 1 is al lowed in IR spec trum, yet is spe cific for rather low in ten sity (I = 0.0002 km/mole), there fore, in IR spec trum of Fe(II)P the mode 3 was shown to be of the low est fre quency. The cal cu lated fre quen cies are equal to 110, 106, and 78 cm–1 in the sin glet, trip let, and quin tet states, re spec - tively. This mode was ob served to have the swing ing of pyrrol rings dur ing the atomic mo tion of Fe and N up - wards from the mo lec u lar plane, with the move ment side ways and back, i.e. ei ther the crown was formed IN VES TI GA TION OF IN FRA RED SPEC TRUM OF Fe(II) PORPHIN 521 Plane vibrations Out-of-plane vibrations D4h D2h D4h D2h eu b2u eg b2g eu b3u eg b3g a1g ag a2u b1u b1g ag b2u b1u a2g b1g a1u au b2g b1g b1u au Ta ble 1 Sym me try cor re la tion of vi bra tion modes of Fe(II)P mol e cule in the point groups D4h and D2h Electronic state of molecule (in D2h) 1Ag 3B1g 5B2g Mode Displac ement Mode Displac ement Mode Displac ement Out-of-plane vibrations 2 0 2 0 1 –0.01 3 –0.20 3 –0.21 3 –0.24 13 0 11 0 11 –0.15 14 –0.15 12 –0.17 7 –0.17 18 –0.15 18 –0.13 17 –0.04 33 –0.02 33 –0.02 33 –0.01 Ta ble 2 Dis place ment of the Fe(II) ion (a.u.) in nor mal vi bra - tions of Fe(II)P in dif fer ent spin states, cal cu lated by the B3LYP/6-311G method 522 MINAEV B. F., MINAEV A. B., HOVORUN D. N. Ta ble 3 Fre quen cies (n, cm–1) and in ten sity (I, km/mole) of nor mal vi bra tions in IR spec trum of Fe(II)-porphin ab sorp tion in the sin glet, trip let and quin tet spin states, cal cu lated by the of B3LYP/6-311G method . Sym metry (D2h) Type of vibration Electronic state of molecule(D2h symmetry) 1Ag 3B1g 5B2g Mode n I Mode n I Mode n I 1 2 3 4 5 6 7 8 9 10 11 b1u Out-of-plane. upwards: Ca¢ N 33, 34, g(CbH); downwards: Ña¢, N 35, 36, g(Cb¢H) 2 41 0 2 44 0 1 58 2´10-4 b1u Out-of-plane. upwards: g(CbH), g(Cb¢H), g(CmH); downwards: Fe, N33 - 36 3 110 7,9 3 106 4,6 3 78 1,6 b3u nas(N 35–Fe and N36–Fe) with large displacement of Fe atom + displacement of rings I and III + pulsation of rings II and IV + d(ÐCa¢ NCa¢, Cb¢ Ca¢ Cm) 11 275 0.07 13 304 0.6 13 267 0.03 b2u nas(N 33–Fe and N34–Fe) with large displacement of Fe atom + displacement of rings II and IV + pulsation of rings I and III + d(ÐCaNCa, CbCaCm) 12 275 0.07 14 304 0.6 12 263 0.7 b1u Out-of-plane. upwards: Ña¢, N 35, 36, g(CbH); downwards: Ca, N33, 34, g(Cb¢H), Fe 13 284 0 11 286 0 11 251 12.4 b1u Out-of-plane. upwards: Ca, Ca¢, N 33–36, g(CmH); downwards: Fe, g(CbH), g(Cb¢H) 14 294 0.8 12 290 5.9 7 208 26.0 b3u nas(N 35–Fe and N36–Fe) displacement of rings II and IV along Îx + sym. twisting of rings I and III + d(ÐCaNFe, Ca¢NCa¢, CmCaN, CmCa¢N) 15 349 1,5 16 368 0.4 16 355 5.8 b2u nas(N 33–Fe and N34–Fe) displacement of rings I and III along Oy + sym. twisting of rings II and IV+ d(ÐCa¢NFe, CaNCa, CmCaN, CmCa¢N) 16 349 1,5 15 368 0.4 15 353 4,6 b1u Out-of-plane. upwards: Ca, Ca¢, N 33–36, g(CbH), g(Cb¢H); downwards: Fe, g(CmH) 18 400 24.4 18 385 36.2 17 358 23.4 b3u nas(N 35–Fe and N36–Fe) with large displacement of Fe atom + swinging of skeleton along Îx + d(ÐCbCaCm, CaCmCa¢) 19 421 11.4 19 426 10,2 20 409 7.2 b2u nas(N 33–Fe and N34–Fe) with large displacement of Fe atom + swinging of skeleton along Îy + d(ÐCb¢ Ca¢ Cm, CaCmCa¢) 20 421 11.4 20 426 10.2 19 405 11.6 b1u Out-of-plane. upwards: Ca¢, N 33, 34, H at Cb; downwards: Ca, N35, 36, H at Cb¢ 27 654 0 29 674 0 29 684 0.2 b1u Out-of-plane. upwards: N33 - 36, H at Cb and Cb¢; g(CmH); downwards: Ca, Ca¢, Fe 33 723 34.9 33 727 31.2 33 729 22.3 b3u nas(N 35–Fe and N36–Fe) + ns(Ca¢ –N), ns(Ca¢ –Cb¢) – pulsation of rings II and IV in antiphase + twisting of rings I and III + r(rCmH) + d(ÐCa¢NCa¢, CaCmCa¢ , CmCaN, CmCa¢N) 36 759 12.1 36 761 14.7 37 759 18.8 b2u nas(N 33–Fe and N34–Fe) + ns(Ca–N), ns(Ca–Cb) – pulsation of rings I and III in antiphase + twisting of rings II and IV + r(rCmH) + d(ÐCaNCa, CaCmCa¢, CmCaN, CmCa¢N) 37 759 12.1 37 761 14.7 35 756 18.2 523 IN VES TI GA TION OF IN FRA RED SPEC TRUM OF Fe(II) PORPHIN 1 2 3 4 5 6 7 8 9 10 11 b1u Out-of-plane. upwards: H at Cb and Cb¢; Ca, Ca¢, Cm; downwards: Cb, Cb¢, m-Í, N33 – 36 38 790 94.0 38 791 98.2 38 792 103.0 b1u Out-of-plane. upwards: H at Cb¢ ; Ca, Cb¢, N 35, 36; downwards: H at Cb¢ ; Cb, Ca¢, N 33, 34 41 805 0 41 808 0 41 814 0.4 b2u nas(N 33–Fe and N34–Fe) + d(ÐÑa¢ Ñb¢ Ñb¢) – deformation of rings II and IV + d(Ñb¢Í) + ns(Ca–N), ns(Ca–Cb) – pulsation of rings I and III in antiphase + d(ÐÑaÑmÑa¢) + r(rCmH) 42 833 7.5 42 833 6.9 42 821 6.4 b3u nas(N 35–Fe and N36–Fe) + d(ÐÑaÑbÑb) – deformation of rings I and I²²+ d(ÑbÍ) + ns(Ca¢ –N), ns(Ca¢ –Cb¢) – pulsation of rings I² and IV in antiphase + d(ÐÑaÑmÑa¢) + r(rCmH) 43 833 7.5 43 833 6.9 44 826 3.9 b1u Out-of-plane. upwards: H at Ñm, Cb and Cb¢ ; Ca, Ca¢,; downwards: Cb, Cb¢, Cm 49 902 156.8 49 904 155.1 49 906 163.6 b2u nas(Ca¢ –N) – in one phase + nas(Ca¢ –Ñb¢) – in one phase in rings ²² and IV, twisting of these rings + ns(Ca–Ñb) – pulsation of rings ² and III in antiphase + nas(N 33–Fe and N34–Fe) + d(Ñb¢Í) + d(ÑbÍ) 55 1009 40.5 55 1013 63.9 58 1017 54.7 b3u nas(Ca–N) – in one phase + nas(Ca–Ñb) – in one phase in rings ² and I²², twisting of these rings + ns(Ca¢ –Ñb¢) – pulsation of rings ²I and IV in antiphase + nas(N35–Fe and N36–Fe) +d(Ñb¢Í) + d(ÑbÍ) 56 1009 40.5 56 1013 63.9 54 1007 78.7 b2u ns(Ca–N) – in antiphase in rings ² and I²², pulsation of rings + nas(Ca¢ –Ñb¢) – in one phase in rings ²² and IV, twisting of these rings + nas(N 33–Fe and N34–Fe) + d(Ñb¢Í) + d(ÑbÍ) + d(ÐCa¢ Cb¢ Cb¢, CCb¢H) 59 1015 28.2 59 1037 2.3 60 1027 28.5 b3u ns(Ca¢ –N) – in antiphase in rings ²² and IV, pulsation of these rings + nas(Ca–Ñb) – in one phase in rings ² and III, twisting of these rings + nas(N 35–Fe and N36–Fe) + d(Ñb¢Í) + d(ÑbÍ) + d(ÐCaCbCb, CCbH) 60 1015 28.2 60 1037 2.3 61 1037 3.2 b3u d(Ñb¢Í) + d(ÐCCb¢H) + nas(Cb¢ –Ñb¢) + ns(Ca¢ –N) – in antiphase in rings ²² and IV + nas(Ca–Ñb) – in one phase in rings ² and III 63 1106 67.4 63 1105 69.3 63 1101 65.7 b2u d(ÑbÍ) + d(ÐCCbH) + nas(Cb–Ñb) + ns(Ca–N) – in antiphase in rings ² and III + nas(Ca¢ –Ñb¢) – in one phase in rings ²² and IV 64 1106 67.4 64 1105 69.3 62 1096 58.9 b3u nas(Ca–N) – in one phase in rings ² and I²², twisting of these rings + d(ÐÑÑbÍ) + ns(Ca¢ –Ñb¢), ns(Ca¢ –N) – in antiphase in rings ²² and IV, pulsation of these rings + d(ÐÑÑmÍ) + nas(N 35–Fe and N36–Fe), no Fe atom displacement 67 1170 7.2 67 1176 8.0 68 1181 12.1 b2u nas(Ca¢ –N) – in one phase in rings ²I and IV, twisting of these rings + d(ÐÑÑb¢Í) + ns(Ca–Ñb), ns(Ca–N) – in antiphase in rings ² and III, pulsation of these rings + d(ÑmÍ) + nas(N 33–Fe and N34–Fe), no Fe atom displacement 68 1170 7.2 68 1176 8.0 66 1172 16.1 b2u d(ÑmÍ) + d(ÐÑÑmÍ) + nas(Ca¢ –N) – in one phase in rings ²I and IV, twisting of these rings + d(Ñb¢Í) + d(ÐÑÑb¢Í) + nas(N 33–Fe and N34–Fe), ns(Ca–Ñb) – in antiphase in rings ² and III, deformation of these rings 71 1277 6.4 71 1285 5.8 71 1264 0.007 524 MINAEV B. F., MINAEV A. B., HOVORUN D. N. (Fig.2) or the mol e cule was ab sorbed. This vi bra tion mode at tracts spe cial at ten tion due to its low-fre quency na ture (Ta ble 3) and due to the most sig nif i cant dis - place ments of Fe(II) ion (0.24 a.u.) dur ing the 1 2 3 4 5 6 7 8 9 10 11 b3u d(ÑmÍ) + d(ÐÑÑmÍ) + nas(Ca–N) – in one phase in rings ² and I²², twisting of these rings + d(ÑbÍ) + d(ÑÑbÍ) + nas(N 35–Fe and N36–Fe), ns(Ca¢ –Ñb¢) – in antiphase in rings ²² and IV, deformation of these rings 72 1277 6.4 72 1285 5.8 72 1275 0.55 b2u nas(Ca¢ –N) – in one phase in rings ²I and IV + d(Ñb¢Í) + d(ÐÑÑb¢Í) + pulsation of rings ² and III, in antiphase + n(Ca¢ –Ñm) + d(ÐÑÑmÍ) 73 1350 17.5 73 1349 17.9 73 1329 7.8 b3u nas(Ca–N) – in one phase in rings ² and I²² + d(ÑbÍ) + d(ÐÑÑbÍ) + pulsation of rings ²I and IV, in antiphase + n(Ca –Ñm) + d(ÐÑÑmÍ) 74 1350 17.5 74 1349 17.9 74 1334 14.3 b3u ns(Ca¢ –N) – in antiphase in rings ²I and IV + nas(Ca –N) – in one phase in rings ² and I²², twisting of these rings + d(ÑbÍ) + d(ÐÑÑbÍ) + d(ÑmÍ) + d(ÐÑÑmÍ) 79 1411 1.8 79 1417 3.5 81 1421 5.7 b2u ns(Ca–N) – in antiphase in rings ² and III + nas(Ca¢ –N) – in one phase in rings ²I and IV, twisting of these rings + d(Ñb¢ Í) + d(ÐÑÑb¢ Í) +d(ÑmÍ) + d(ÐÑÑmÍ) 80 1411 1.8 80 1417 3.5 79 1411 6.0 b3u nas(Ca–Ñb) – in one phase in rings I and III, twisting of these rings + nas(Ñb¢ –Ñb¢) + nas(Ca–N) + pulsation of rings ²² and IV + d(ÑbÍ)+ d(ÐÑÑbÍ) + ns(C–Ñm) 83 1496 8.9 83 1496 10.3 84 1473 4.4 b2u nas(Ca¢ –Ñb¢) – in one phase in rings ²² and IV, twisting of these rings + nas(Ñb–Ñb) + nas(Ca¢ –N) + pulsation of rings ² and I²² + d(Ñb¢ Í) + d(ÐÑÑb¢ Í) + ns(C–Ñm) 84 1496 8.9 84 1496 10.3 83 1460 1.8 b3u nas(Ñb¢ –Ñb¢) + ns(Ca¢ –N) – in antiphase in rings ²² and ²V + nas(Ca–N) – in one phase in rings ² and III + ns(C–Ñm) + d(Ñb¢ Í) + d(ÐÑÑb¢ Í) +d(ÑbÍ) + d(ÐÑÑbÍ) 87 1581 23.0 87 1578 17.6 88 1558 24.5 b2u nas(Ñb–Ñb) + ns(Ca–N) – in antiphase in rings ² and ²II + nas(Ca¢ –N) – in one phase in rings ²I and IV + ns(C–Ñm) + d(Ñb¢Í) + d(ÐÑÑb¢ Í)+ d(ÑbÍ)+ d(ÐÑÑbÍ) 88 1581 23.0 88 1578 17.6 87 1545 7.0 b3u nas(C–Ñm) + nas(Ñb¢ –Ñb¢) + nas(Ña–Ñb) – in one phase in rings ² and ²II + nas(Ca–N) + nas(Ca¢ –N) + d(ÑmÍ) + d(ÐÑÑmÍ) 90 1642 0.4 90 1634 0.06 91 1598 2.2 b2u nas(C–Ñm) + nas(Ñb–Ñb) + nas(Ña¢ –Ñb¢) in one phase in rings ²² and ²V + nas(Ca–N) + nas(Ca¢ –N) + d(ÑmÍ) + d(ÐÑÑmÍ) 91 1642 0.4 91 1634 0.06 90 1586 6.9 b3u n(Cm a–Í) ³ (Cm b–Í) – in one phase, but in antiphase with n(Cmg–Í) and (Cmd–Í) 95 3191 14.3 95 3185 14.3 95 3173 23.0 b2u n(Cm a–Í) ³ (Cm d–Í)) – in one phase, but in antiphase with í(Cmb–Í) and (Cmg–Í) 96 3191 14.3 965 3185 14.3 96 3173 21.8 b3u nas(Cb–Í)(²), nas(Cb–Í)(²²²) – in one phase 99 3230 5.6 100 3227 6.6 101 3223.3 8.5 b2u nas(Cb¢ –Í)(²²), nas(Cb¢ –Í)(²V) – in one phase 100 3230 5.6 99 3227 6.6 99 3222.7 7.0 b3u ns(Cb¢ –Í)(²²), ns(Cb¢ –Í)(²V) – in antiphase 103 3253 36.0 103 3251 42.1 104 3246.1 53.2 b2u ns(Cb–Í)(²), ns(Cb–Í)(²²²) – in antiphase 104 3253 36.0 104 3251 42.1 103 3246.0 51.5 out-of-plane vi bra tions (Ta ble 2). This vi bra tion is ca - pa ble to in duce the spin tran si tion with spin re verse in re ac tions of hemoproteins and cytochromes [5]. Cal cu - lated fre quency of the high-spin 5B2g state (78 cm–1) is close to the value, ob served dur ing re ac tion dy nam ics of myoglobin hemoprotein, i.e. 75 cm–1 [21]. No ta bly, this form of vi bra tion is slightly dif fer ent from that cal - cu lated in Ref. [8]. Vi bra tion mode 14 of the sin glet state (mode 12 in T and mode 7 in Q state) was spe cific for the move ment of pyrrol rings along with the move ment of Fe(II) ion per pen dic u larly to the plane of the mol e cule, which re - sulted in gen eral swing ing of porphin skel e ton. It has to be noted that in Q state the am pli tude of vi - bra tions of the pyrrol rings I and III in creases (es pe - cially of N33 and N34 at oms), while the vi bra tions of CmH groups and pyrrol rings II and IV de crease their am pli - tude; at oms N35 and N36 shift to the op po site side, re - gard ing at oms N33 and N34. (In the S and T states all N at oms are headed to wards one di rec tion). The fre - quency of these vi bra tions (mode 7) is ~80 cm–1 lower than that in the S and T states (Ta ble 3), while in ten sity in creases sig nif i cantly (26.0 km/mole). The mode 18 (17 in Q state) is also char ac ter ised by a large dis place ment of Fe(II) ion, yet only in ex cited state, while in nor mal (quin tet) state, the dis place ment of Fe(II) ion is 3–3.5 times lower (Ta ble 2), which, in our opin ion, is con nected with sig nif i cant dif fer ences in ge om e try of the mol e cule in Q state and con se quently with the change in sym me try [11]. In this mode, in the course of vi bra tion dur ing the out-of-plane dis place - ment of Fe(II) ion and meth ane bridges, the pyrrol rings bend in the op po site di rec tion. The range of fre quen - cies re viewed (0–426 cm–1) is spe cific for the high est in ten sity of this mode (Ta ble 3). Ac cord ing to our cal cu la tions, in IR spec tra in the range 427–653 cm–1, the vi bra tions of Fe(II)P are not pres ent. The range of 653–906 cm–1 was re vealed to have in tense out-of-plane vi bra tions of low dis place - ment am pli tude (modes 33 and 38) with out dis place - ment of Fe(II) ion (mode 49, Fig.3). There are also asym met ri cal va lence vi bra tions of Fe–N bonds with groups CbH, Cb¢H, and CmH of the be low-av er age in ten - sity, with swing ing of the pyrrol rings and their pul sa - tion as a re sult of skel e tal va lence vi bra tions of Ca–N and Ca–Cb, or Ca¢–N and Ca¢–Cb¢ and the changes in an - gles, pre sented in Ta ble 3 (modes 36(37), 42(43)). Out-of-plane vi bra tion modes 38 and 49 were shown to have the high est in ten sity in the cal cu lated IR spec trum (103 and 164 km/mole, repectively, in the Q state). If we re view the same out-of-plane vi bra tion mode in the ex cited state, its vi bra tion fre quency will be lower, than in the ground state, yet the fre quency de - crease is only 1–4 cm–1. Modes 33 and 38 are spe cific for the de crease in am pli tude of the Fe and N at oms dis place ments dur ing vi bra tion, while in mode 49 the vi bra tions of these at - oms do not take place (Ta ble 3, Fig.3). Mode 49 is the 525 IN VES TI GA TION OF IN FRA RED SPEC TRUM OF Fe(II) PORPHIN Fig.2 Shape of vi bra tion mode 3 in IR spec trum of Fe(II)P last one among the out-of-plane vi bra tions, al lowed in the IR spec trum. The cal cu la tions for the S state for the modes 33, 38, and 49 with fre quen cies 723, 790, and 902 cm–1, re spec tively, us ing the same ba sis for the vi - bra tion spec trum of H2P mol e cule cor re spond to the fre - quen cies 713, 804, and 876 cm–1, which, tak ing into ac - count zoom mul ti plier 0.975, amounts to 695, 784, and 854 cm–1, re spec tively. Ex per i men tal val ues of fre - quen cies for H2P (691, 785, and 852 cm–1) are in a good agree ment with our cal cu la tions. Thus, the cor re la tion be tween data of these bands in IR spec tra of H2P and Fe(II)P us ing the method B3LYP/6-311G was de ter mined, and in our opin ion, this method will al low ob tain ing re li able re sults for cal - cu la tion of IR spec tra of iron porphyrin and its de riv a - tives. The vi bra tions close to 1 000 cm–1 (modes 55(56), 59(60) in S, and cor re spond ing modes in T and Q states) are as sisted by Fe–N bonds (asym met ri cal vi bra tions) with Fe atom shift (0.02–0.03 a.u.), yet their con tri bu - tion to a gen eral form of this vi bra tion is in sig nif i cant. Dom i nant con tri bu tion is made by va lence vi bra tions of the Ca–N (Ca¢–N) and Ca–Cb (Ca¢–Cb¢) bonds, at the same time sym met ri cal vi bra tions re sult in the pul sa tion of the rings, whereas asym met ri cal ones re sult in their twist ing. Later vi bra tion modes were not ob served to have the dis place ment of Fe atom, ex cept for modes 71 (72) in T state. Modes 55 (56) are spe cific for high in ten sity in all elec tronic states un der in ves ti ga tion, while in ten - sity in modes 59 and 60 in the T state de creased sig nif i - cantly (down to 2.3 km/mole). The range of fre quen cies 1100 – 1285 cm–1 is dom i - nated by the in-plane deformational CH-vi bra tions of Fe(II)P. In tense vi bra tion modes 63 and 64, fre quency ~1100 cm–1, are con trib uted mostly by deformational CH-vi bra tions of pyrrol rings with changes of an gles CaCbH (Ca¢Cb¢H) and CbCbH (Cb¢Cb¢H). Low-in ten sity deformational CmH vi bra tions with changes of an gles CaCmH (Ca¢CmH) along with CH-vi bra tions of pyrrol rings are ob tained at the fre quency of 1170 and 1270 cm–1. Pyrrol ring bonds Ca–N, Ca–Cb, and Cb–Cb take part in the vi bra tions in the range of 1100–1285 cm–1. Asym met ri cal vi bra tions of Fe–N bond are ex pired at 1285 cm–1. In the modes 71(72) the dis place ment of Fe(II) ion dur ing vi bra tion (0.01 a.u.) takes place only in T state, and in the modes 67 and 68 an asym met ri cal va lence vi bra tion of Fe–N bonds take place with out any dis place ment of Fe(II) ion. In IR spec trum of Fe(II)P in the range of 1300–1642 cm–1 there are some skel e tal vi bra tions of the methine bridges and pyrrol rings, whereas at the in - 526 MINAEV B. F., MINAEV A. B., HOVORUN D. N. Fig.3 Shape of vi bra tion mode 49 in IR spec trum of Fe(II)P crease in the fre quency the con tri bu tion of Ca–Cm vi bra - tions in creases and de creases of the Ca–N con tri bu tion. Thus, vi bra tion modes 73 and 74 are pre dom i nantly con trib uted by nas(Ca¢–N) and nas(Ca–N) re spec tively, while in modes 90, 91 asym met ri cal va lence vi bra tions Ca–Cm and Ca¢–Cm are more com mon. Along with the lat ter vi bra tions, there are deformational vi bra tions of CbH- and CmH groups with sig nif i cant dis place ment am pli tude with an gles CCbH (CCb¢H) and CCmH. The change in vi bra tion fre quency and the in ten sity of vi - bra tion modes ob served dur ing the tran si tion from nor - mal to ex cited states did not re veal any reg u lar i ties, gen er ally the in ten sity of vi bra tion modes in the range of fre quen cies of 1300–1642 cm–1 is close to the av er - age in ten sity or be low av er age. The range of fre quen cies of 1650–3255 cm–1 is spe - cific for three de gen er ate vi bra tion modes, be long ing to va lence vi bra tions of C–H bonds (Ta ble 3), among which Cm–H bonds take part in modes 95 and 96, and Cb–H bonds take part in modes 99, 100, 103, 104. The vi bra tion of Cm–H bonds is spe cific for lower fre - quency, than in the case of Cb–H. Sym met ri cal vi bra - tions of Cb–H bonds were ob tained at higher fre quen - cies and shown to be more in tense than the asym met ri - cal ones. In the Q state, vi bra tion fre quen cies of C–H stretch ing modes are lower than in the S and T states and vi bra tion modes are spe cific for higher in ten sity. This con clu sion is a gen eral cri te rion of iden ti fi ca tion of the higher spin state of Fe(II)P and we con sider it to be true for all hemoproteins. The cal cu lated IR ab sorp tion spec trum of Fe(II)P mol e cule in the Q state is pre sented in Fig.4 with out ac count of the zoom mul ti plier. The cal cu la tions of Fe(II)-porphin com plexes with dif fer ent types of ax ial lig ands us ing DFT as well as some other ap proaches are cur rently in prog ress. Cen tral as pect of hemoprotein dy nam ics is the dis - place ment of Fe(II) ion from the plane of porphin macrocycle. The in ves ti ga tion of deoxymyoglobin us - ing Mossbauer effect re vealed that at low tem per a ture the mo tion of Fe(II) ion in the ac tive cen tre of heme with one ax ial ligand cor re sponds to har monic vi bra - tions, yet at 165 K this mo tion be comes anharmonical and is ac com pa nied by a rapid in crease in am pli tude [8, 21]. This be hav iour may be ex plained by the change in the spin di rec tion (flip-over) by means of spin-or bit in - ter ac tion be tween two neigh bour ing multiplet states of Fe(II)P [7, 21]. At the same time the out-of-plane vi - bra tion mode, con nected with dis place ment of Fe(II) ion, should have dif fer ent fre quen cies and equi lib rium po si tions in these states [8, 11]. The cal cu lated IR spec - trum of Fe(II)P mol e cule re vealed the sharp change of vi bra tion fre quen cies of modes 3 and 7 in the Q state, com pared to the T and S states. The in ten sity of IR ab - sorp tion of vi bra tion mode 7 is known to in crease sig - nif i cantly as well. The Q state was also re vealed to ex - pend in Fe(II) frame in porphin macrocycle [11]. Our cal cu la tion does not con firm Fe(II) ion to leave the plane of porphin macrocycle at the quin tet state equi lib - rium, which is in good agree ment with re sults, de - scribed in Ref. [8]. It is quite pos si ble that the force field in quin tet state is soft ened sig nif i cantly, which as - sists leav ing of Fe(II) ion from the macrocycle plane. It may be con sid ered that in deoxymyoglobin the out-of-plane dis place ments of Fe(II) ion take place eas - ily un der the in flu ence of pro teins. Con clu sions. Sharp in crease in in ten sity of vi bra - tion mode 7 in the Q state as well as sig nif i cant dis - place ment of its fre quency (from 290 to 208 cm–1), in com par i son with the cor re spond ing modes 14 (S) and 12 (T) in lower-spin states is the most im por tant re sult of the pres ent work. The low-fre quency IR range (300–200 cm–1) is open for mod ern spec tral in ves ti ga - tions and its anal y sis pro vides a re li able cri te rion for iden ti fi ca tion of the spin state. 527 IN VES TI GA TION OF IN FRA RED SPEC TRUM OF Fe(II) PORPHIN Fig.4 IR ab sorp tion spec tra in quin tet state, cal cu lated by the B3LYP/6-311G method (max i mum in ten sity is 163.6 km/mole; band half-width is 20 cm–1) In crease in IR in ten sity of the vi bra tion mode 7 in the Q state in di cates a sig nif i cant change in elec tronic den sity dur ing the dis place ment of at oms in this mode, which is a spe cific fea ture of oc cu pa tion of 3dx2–y2 or - bital, which is of nap ping char ac ter in re gards to Fe–N bonds. That is why the out-of-plane bend ing of these bonds takes place in a dif fer ent way in the Q and in the S and T states of Fe(II)P, which also de ter mines the shift of fre quen cies and in ten si ties. The spec i fic ity of these dis place ments de pend ing on the spin is of great in ter est for fu ture ex per i men tal in ves ti ga tions of spin dy nam ics and iden ti fi ca tion of spins of hemoproteins. The work was sup ported by State Fund of Fun da - men tal Re search F 25.5 /008 Spin-ca tal y sis in bio chem - i cal pro cesses with par tic i pa tion of Cytochrom P450 and other iron-por phy rins Á. Ô. Ìèíàåâ, À. Á. Ìèíàåâ, Ä. Í. Ãîâîðóí Èññëåäîâàíèå èíôðàêðàñíîãî ñïåêòðà ìîëåêóëû Fe(II)- ïîðôèíà â ðàçíûõ ñïèíîâûõ ñîñòîÿíèÿõ êâàíòîâî-õèìè÷åñêèì ìåòîäîì ôóíêöèîíàëà ïëîòíîñòè Ðåçþìå Êâàíòîâî-õèìè÷åñêèì ìåòîäîì òåîðèè ôóíêöèîíàëà ïëîòíîñòè ðàññ÷èòàíû èíôðàêðàñíûå (ÈÊ) ñïåêòðû ïîãëîùåíèÿ ìîëåêóëû Fe(II)-ïîðôèíà äëÿ ñèíãëåòíîãî, òðèïëåòíîãî è êâèíòåòíîãî ñïèíîâûõ ñîñòîÿíèé. Äëÿ îïòèìèçàöèè ãåîìåòðèè è ðàñ÷åòà ÈÊ ñïåêòðà èñïîëüçîâàí íåîãðàíè÷åííûé ïî ñïèíó ôóíêöèîíàë UB3LYP â áàçèñå 6-311G. Ïîêàçàíî, ÷òî êâèíòåòíîå ñîñòîÿíèå 5B2g ñèììåòðèè D2h ÿâëÿåòñÿ îñíîâíûì. Äëÿ òðèïëåòíîãî ñîñòîÿíèÿ ñ íèçêîé ýíåðãèåé 3À2g è ñèíãëåòíîãî ñîñòîÿíèÿ ñ âûñîêîé ýíåðãèåé 1À1g, èìåþùèõ ñèììåòðèþ D4h, ÈÊ ñïåêòðû èçó÷åíû â òî÷å÷íîé ãðóïïå ñèììåòðèè D2h. Ïðîàíàëèçèðîâàíû âñå àêòèâíûå â ÈÊ ñïåêòðå êîëåáàòåëüíûå ìîäû.  êâèíòåòíîì ñîñòîÿíèè íèçêî÷àñòîòíûå âíåïëîñêîñòíûå êîëåáàòåëüíûå ìîäû ñ áîëüøèì ñìåùåíèåì èîíà Fe(II) èìåþò ðàçëè÷íûå èíòåíñèâíîñòè è ÷àñòîòíûå ñäâèãè ïî ñðàâíåíèþ ñ ñèíãëåòíûì è òðèïëåòíûì ñîñòîÿíèÿìè. Êëþ÷åâûå ñëîâà: Fe(II)-ïîðôèí, ñèíãëåò, òðèïëåò, êâèíòåò, ñïèíîâûå ñîñòîÿíèÿ, òåîðèÿ ôóíêöèîíàëà ïëîòíîñòè, ÈÊ ñïåêòð ïîãëîùåíèÿ, íèçêî÷àñòîòíûå ìîäû. REFERENCES 1. Loew G. H., Har ris D. L. Role of the heme ac tive site and pro - tein en vi ron ment in struc ture, spec tra, and func tion of the cytochrome P 450 s // Chem. Rev.–2000.–100.–P. 407–419. 2. Kumar D., Hirao H., Que L., Shaik S. The o ret i cal in ves ti ga - tion of C–H hydroxylation by (N4Py)FeIV=O2+: An ox i dant more pow er ful than P450? // J. Amer. Chem. Soc.– 2005.–177.–P. 8026–8027. 3. Becke A. D. Den sity-func tional thermochemistry. The role of ex act ex change // J. Chem. Phys.–1993.–98.–P. 5648–5655. 4. Minaev B. F. Spin ef fects in reductive ac ti va tion of O2 by oxydase en zymes // RIKEN Rev.–2002.– 44.–P. 147–149. 5. Ìèíàåâ Á. Ô. Îá ýëåêòðîííûõ ìåõàíèçìàõ áèîàêòèâàöèè ìîëåêóëÿðíîãî êèñëîðîäà // Óêð. á³îõ³ì. æóðí.–2002.– 74.–Ñ. 11–19. 6. Blomberg M. R. A., Siegbahn P. E. M., Babcoock G. T., Wikstorm M. O-O bond split ting mech a nism in cytochrome oxidase // J. Inorg. Biochem.–2000.–80.–P. 261–269. 7. Harvey J. N. Spin-for bid den CO ligand re com bi na tion in myoglobin // Far a day Dis cuss.–2004.–127.–P. 165–177. 8. Kozlowski P. M., Spiro T. G., Berces A., Zgierski M. Z. Low-ly ing spin states of iron(II) Porphine // J. Phys. Chem. B.–1998.–102.–P. 2603–2608. 9. Liao M.-S., Scheiner S. Elec tronic struc ture and bond ing in metal por phy rins // J. Chem. Phys.–2002.–117.–P. 205–219. 10. Minaev B., Cgren H. The o ret i cal DFT study of phos pho res - cence from por phy rins // Chem. Phys.–2005.– 315.–P. 215–239. 11. ̳íàºâ Á. Ï., ̳íàºâà Â. Î., Âàñåíêî Î. Ì. Ñï³íîâ³ ñòàíè ìîëåêóëè Fe(²²)-ïîðô³íó: êâàíòîâî-õ³ì³÷í³ äîñë³äæåííÿ ìåòîäîì ôóíêö³îíàëó ãóñòèíè // Ukr. Bioorg. Acta.–2007.–5, ¹ 1.–Ñ. 24–31. 12. Choe Y.-K., Nakajima T., Hirao K., Lindh R. The o ret i cal study of the elec tronic ground state of iron(II) porphine // J. Chem. Phys. II.–1999.–111.– P. 3837–3844. 13. Ñîëîâüåâ Ê. Í., Ãëàäêîâ Ë. Ë., Ñòàðóõèí À. Ñ., Øêèðìàí Ñ. Ô. Ñïåêòðîñêîïèÿ ïîðôèðèíîâ: êîëåáàòåëüíûå ñîñòîÿíèÿ –Ì.: Íàóêà è òåõíèêà, 1985.–415 ñ. 14. Ìàìàðäàøâèëè Í. Æ., Ãîëóá÷èêîâ Î. À. Ñïåêòðàëüíûå ñâîéñòâà ïîðôèðèíîâ è èõ ïðåäøåñòâåííèêîâ è ïðîèçâîäíûõ // Óñïåõè õèìèè.–2001.–70.–Ñ. 656–686. 15. Gladkov L., Gradyushko A., Shulga A., Solovyov K., Starukhin A. Ex per i men tal and the o ret i cal in ves ti ga tion of in - fra red spec tra of porphin, its deuterated de riv a tives and their metal com plexes // J. Mol. Struct. THEOCHEM.– 1978.–45.–P. 463–493. 16. Minaev B., Wang Y.-H., Wang C.-K., Luo Y., Cgren H. The o - ret i cal DFT study of vibronic struc ture of the first ab sorp tion Qx band and flu o res cence in free-base porphyn // Spectrochim. Acta. A.–2006.–65.–P. 308–323. 17. Kozlowski P., Jarzecki A., Pulay P., Li M., Zgierski M. Vi bra - tional as sign ment and def i nite har monic force field for porphine. 2. Com par i son with nonresonance Raman data // J. Phys. Chem.–1996.–100.–Ð. 13985–13992. 18. Ìèíàåâ Á. Ô., Ìèíàåâ À. Á. Ðàñ÷åò ôîñôîðåñöåíöèè ïîðôèðèíîâ ìåòîäîì ôóíêöèîíàëà ïëîòíîñòè // Îïò. ñïåêòðîñêoïèÿ.–2005.–98.–Ñ. 248–253. 19. Frisch M. J., Trucks G. W., Schlegel H. B. Gaussi an 03, Re vi - sion 6.02.–Wellington, 2004. 20. Falk J. E. Por phy rins and metalloporphyrins.– Am ster dam; Lon don; New-York: Elsevier, 1964.–Vol. 2.– 61 p. 21. Zhu L., Sage J. T., Cham pion P. M. Ob ser va tion of co her ent dy nam ics in heme pro teins // Sci ence.–2004.–266.– P. 629–632. UDC 577.175.6:544.18:543.422 Re ceived 28.03.07 528 MINAEV B. F., MINAEV A. B., HOVORUN D. N.