Про обмеженість повної варіації логарифма добутку Бляшке
Встановлено, що для збіжного в одиничному крузі добутку Бляшке B(z) умова −∞ < ∫log(1−t)n(t,B)dt є достатньою для обмеженості повної варіації logB на колі радіуса r, 0 < r < 1 а для добутків B(z) з нулями, зосередженими лише на одному промені, вона також і необхідна. Тут n(t,B) — кількість...
Gespeichert in:
| Veröffentlicht in: | Український математичний журнал |
|---|---|
| Datum: | 1999 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | Ukrainian |
| Veröffentlicht: |
Інститут математики НАН України
1999
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/157657 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Про обмеженість повної варіації логарифма добутку Бляшке / Я.В. Васильків // Український математичний журнал. — 1999. — Т. 51, № 11. — С. 1449–1455. — Бібліогр.: 8 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Встановлено, що для збіжного в одиничному крузі добутку Бляшке B(z) умова −∞ < ∫log(1−t)n(t,B)dt є достатньою для обмеженості повної варіації logB на колі радіуса r, 0 < r < 1 а для добутків B(z) з нулями, зосередженими лише на одному промені, вона також і необхідна. Тут n(t,B) — кількість нулів функції B(z) в крузі радіуса t.
We establish that, for a Blaschke product B(z) convergent in the unit disk, the condition -∞ < ∫log(1−t)n(t,B)dt is sufficient for the total variation of logB to be bounded on a circle of radius r, 0 < r < 1. For products B(z) with zeros concentrated on a single ray, this condition is also necessary. Here, n(t, B) denotes the number of zeros of the functionB (z) in a disk of radiust.
|
|---|