On the maximum-minimum principle for advection-diffusion equations

The air pollution transport model is generally solved with the so-called operator splitting technique. The original problem is split into several subproblems and the solution of the model is obtained by solving the subproblems cyclically. In this paper, we analyze the advection, diffusion and emis...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автор: Horváth, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут програмних систем НАН України 2006
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/1578
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the maximum-minimum principle for advection-diffusion equations / Horváth R. // Проблеми програмування. — 2006. — N 2-3. — С. 664-668. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-1578
record_format dspace
spelling Horváth, R.
2008-08-26T13:22:00Z
2008-08-26T13:22:00Z
2006
On the maximum-minimum principle for advection-diffusion equations / Horváth R. // Проблеми програмування. — 2006. — N 2-3. — С. 664-668. — Бібліогр.: 10 назв. — англ.
1727-4907
https://nasplib.isofts.kiev.ua/handle/123456789/1578
004.75
The air pollution transport model is generally solved with the so-called operator splitting technique. The original problem is split into several subproblems and the solution of the model is obtained by solving the subproblems cyclically. In this paper, we analyze the advection, diffusion and emission subproblems. These subproblems have to possess certain qualitative properties that follow from physical considerations: nonnegativity preservation, maximumminimum principle and maximum norm contractivity. We show that these properties are valid for the subproblems, and we shad light on their relations.
en
Інститут програмних систем НАН України
Прикладне програмне забезпечення
On the maximum-minimum principle for advection-diffusion equations
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the maximum-minimum principle for advection-diffusion equations
spellingShingle On the maximum-minimum principle for advection-diffusion equations
Horváth, R.
Прикладне програмне забезпечення
title_short On the maximum-minimum principle for advection-diffusion equations
title_full On the maximum-minimum principle for advection-diffusion equations
title_fullStr On the maximum-minimum principle for advection-diffusion equations
title_full_unstemmed On the maximum-minimum principle for advection-diffusion equations
title_sort on the maximum-minimum principle for advection-diffusion equations
author Horváth, R.
author_facet Horváth, R.
topic Прикладне програмне забезпечення
topic_facet Прикладне програмне забезпечення
publishDate 2006
language English
publisher Інститут програмних систем НАН України
format Article
description The air pollution transport model is generally solved with the so-called operator splitting technique. The original problem is split into several subproblems and the solution of the model is obtained by solving the subproblems cyclically. In this paper, we analyze the advection, diffusion and emission subproblems. These subproblems have to possess certain qualitative properties that follow from physical considerations: nonnegativity preservation, maximumminimum principle and maximum norm contractivity. We show that these properties are valid for the subproblems, and we shad light on their relations.
issn 1727-4907
url https://nasplib.isofts.kiev.ua/handle/123456789/1578
citation_txt On the maximum-minimum principle for advection-diffusion equations / Horváth R. // Проблеми програмування. — 2006. — N 2-3. — С. 664-668. — Бібліогр.: 10 назв. — англ.
work_keys_str_mv AT horvathr onthemaximumminimumprincipleforadvectiondiffusionequations
first_indexed 2025-12-07T16:29:30Z
last_indexed 2025-12-07T16:29:30Z
_version_ 1850867680911818752