On the maximum-minimum principle for advection-diffusion equations
The air pollution transport model is generally solved with the so-called operator splitting technique. The original problem is split into several subproblems and the solution of the model is obtained by solving the subproblems cyclically. In this paper, we analyze the advection, diffusion and emis...
Збережено в:
| Дата: | 2006 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут програмних систем НАН України
2006
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/1578 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On the maximum-minimum principle for advection-diffusion equations / Horváth R. // Проблеми програмування. — 2006. — N 2-3. — С. 664-668. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-1578 |
|---|---|
| record_format |
dspace |
| spelling |
Horváth, R. 2008-08-26T13:22:00Z 2008-08-26T13:22:00Z 2006 On the maximum-minimum principle for advection-diffusion equations / Horváth R. // Проблеми програмування. — 2006. — N 2-3. — С. 664-668. — Бібліогр.: 10 назв. — англ. 1727-4907 https://nasplib.isofts.kiev.ua/handle/123456789/1578 004.75 The air pollution transport model is generally solved with the so-called operator splitting technique. The original problem is split into several subproblems and the solution of the model is obtained by solving the subproblems cyclically. In this paper, we analyze the advection, diffusion and emission subproblems. These subproblems have to possess certain qualitative properties that follow from physical considerations: nonnegativity preservation, maximumminimum principle and maximum norm contractivity. We show that these properties are valid for the subproblems, and we shad light on their relations. en Інститут програмних систем НАН України Прикладне програмне забезпечення On the maximum-minimum principle for advection-diffusion equations Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On the maximum-minimum principle for advection-diffusion equations |
| spellingShingle |
On the maximum-minimum principle for advection-diffusion equations Horváth, R. Прикладне програмне забезпечення |
| title_short |
On the maximum-minimum principle for advection-diffusion equations |
| title_full |
On the maximum-minimum principle for advection-diffusion equations |
| title_fullStr |
On the maximum-minimum principle for advection-diffusion equations |
| title_full_unstemmed |
On the maximum-minimum principle for advection-diffusion equations |
| title_sort |
on the maximum-minimum principle for advection-diffusion equations |
| author |
Horváth, R. |
| author_facet |
Horváth, R. |
| topic |
Прикладне програмне забезпечення |
| topic_facet |
Прикладне програмне забезпечення |
| publishDate |
2006 |
| language |
English |
| publisher |
Інститут програмних систем НАН України |
| format |
Article |
| description |
The air pollution transport model is generally solved with the so-called operator splitting technique. The original
problem is split into several subproblems and the solution of the model is obtained by solving the subproblems
cyclically. In this paper, we analyze the advection, diffusion and emission subproblems. These subproblems have to
possess certain qualitative properties that follow from physical considerations: nonnegativity preservation, maximumminimum
principle and maximum norm contractivity. We show that these properties are valid for the subproblems, and
we shad light on their relations.
|
| issn |
1727-4907 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/1578 |
| citation_txt |
On the maximum-minimum principle for advection-diffusion equations / Horváth R. // Проблеми програмування. — 2006. — N 2-3. — С. 664-668. — Бібліогр.: 10 назв. — англ. |
| work_keys_str_mv |
AT horvathr onthemaximumminimumprincipleforadvectiondiffusionequations |
| first_indexed |
2025-12-07T16:29:30Z |
| last_indexed |
2025-12-07T16:29:30Z |
| _version_ |
1850867680911818752 |