Факторизационный критерий локальной разрешимости локально-конечных групп с условием минимальности для примарных подгрупп
С помощью теоремы Ф. Холла — Чунихина, дающей критерии разрешимости конечных групп, устанавливается, что локально конечная группа с конечными силовскими подгруппами тогда и только тогда локально разрешима, когда в ней дополняемы все ее силовские подгруппы (теорема 1). Затем с помощью этого результат...
Gespeichert in:
| Datum: | 1985 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут математики НАН України
1985
|
| Schriftenreihe: | Український математичний журнал |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/157860 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Факторизационный критерий локальной разрешимости локально-конечных групп с условием минимальности для примарных подгрупп / С.Н. Черников // Український математичний журнал. — 1985. — Т. 37, № 6. — С. 762–766. — Бібліогр.: 6 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | С помощью теоремы Ф. Холла — Чунихина, дающей критерии разрешимости конечных групп, устанавливается, что локально конечная группа с конечными силовскими подгруппами тогда и только тогда локально разрешима, когда в ней дополняемы все ее силовские подгруппы (теорема 1). Затем с помощью этого результата получен аналогичный более общий результат для локально конечных групп, все силовские подгруппы которых удовлетворяют условию минимальности (теорема 2). |
|---|