Субклітинна локалізація S6K1 і S6K2 форм кінази рибосомного білка S6 у тиреоцитах щурів за умов дво- та тривимірної культури

За умов моношарової культури тиреоцитів щура відбувається внутрішньоклітинний перерозподіл S6K1/2, які поряд з цитоплазмою детектуються у ядрах клітин. Метою роботи було дослідити зв’язок між активацією процесів міграції, проліферації, втрати фолікулярної організації тиреоцитів за різних умов культи...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Біополімери і клітина
Datum:2008
Hauptverfasser: Хоруженко, А.І., Чередник, О.В., Філоненко, В.В.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Інститут молекулярної біології і генетики НАН України 2008
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/157885
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Субклітинна локалізація S6K1 і S6K2 форм кінази рибосомного білка S6 у тиреоцитах щурів за умов дво- та тривимірної культури / А.І. Хоруженко, О.В. Чередник, В.В. Філоненко // Біополімери і клітина. — 2008. — Т. 24, № 6. — С. 470-475. — Бібліогр.: 20 назв. — укр., англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-157885
record_format dspace
spelling Хоруженко, А.І.
Чередник, О.В.
Філоненко, В.В.
2019-06-21T05:35:42Z
2019-06-21T05:35:42Z
2008
Субклітинна локалізація S6K1 і S6K2 форм кінази рибосомного білка S6 у тиреоцитах щурів за умов дво- та тривимірної культури / А.І. Хоруженко, О.В. Чередник, В.В. Філоненко // Біополімери і клітина. — 2008. — Т. 24, № 6. — С. 470-475. — Бібліогр.: 20 назв. — укр., англ.
0233-7657
DOI: http://dx.doi.org/10.7124/bc.0007BF
https://nasplib.isofts.kiev.ua/handle/123456789/157885
577.25, 591.87, 611.44
За умов моношарової культури тиреоцитів щура відбувається внутрішньоклітинний перерозподіл S6K1/2, які поряд з цитоплазмою детектуються у ядрах клітин. Метою роботи було дослідити зв’язок між активацією процесів міграції, проліферації, втрати фолікулярної організації тиреоцитів за різних умов культивування та субклітинною локалізацією S6K1/2. Виявлено загальне зростання вмісту S6K1/2 у проліферуючих клітинах. У тиреоцитах, культивованих у вигляді фолікулів, внутрішньоклітинна локалізація S6K1/2 не змінюється відносно нормальної тканини. Субклітинну релокалізацію S6K1/2 відзначено лише для окремої популяції клітин, що за певних причин втратили фолікулярну організацію і відповідно функціональну активність. Отже, зміна субклітинної локалізації S6K1/2 у культивованих тиреоцитах безпосередньо пов’язана зі зміною рівня диференціації на відміну від проліферації та міграції цих клітин.
The aim of this work was to study the link between activation of processes of migration, proliferation, loss of thyrocyte follicle organization at different culture conditions and subcellular localization of S6K1/2. The subcellular redistribution of S6K1/2 takes place in the rat thyrocyte monolayer culture where S6K1/2 was detected not only in the cytoplasm but in the nuclei of cells as well|. In addition, the content of S6K1/2 in proliferating cells was increased. The subcellular| localization of S6K1/2 in thyrocytes cultivated as follicles was similar to that observed in normal thyroid tissue. Subcellular relocalization of S6K1/2 was detected only in certain cellular population, which for some reasons lost follicle organization and, consequently, functional activity. Thus, the changes in subcellular localization of S6K1/2 in cultivated thyrocytes are directly related to the level of differentiation, unlike proliferation and migration of these cells.
В условиях монослойной культуры тиреоцитов крысы происходит внутриклеточное перераспределение S6K1/2, которые наряду с цитоплазмой детектируются в ядрах клеток. Цель работы состояла в изучении связи между активацией процессов миграции, пролиферации, потери фолликулярной организации тиреоцитов при разных условиях культивирования и субклеточной локализацией S6K1/2. Обнаружено общее повышение содержания S6K1/2 в пролиферирующих клетках. В тиреоцитах, культивируемых в виде фолликулов, внутриклеточная локализация S6K1/2 не изменялась по сравнению с нормальной тканью. Субклеточная релокализация S6K1/2 отмечена лишь для отдельной популяции клеток, которые по различным причинам теряли фолликулярную организацию и соответственно функциональную активность. Таким образом, изменение субклеточной локализации S6K1/2 в культивируемых тиреоцитах непосредственно связано с изменением уровня дифференциации в отличие от пролиферации и миграции этих клеток.
uk
Інститут молекулярної біології і генетики НАН України
Біополімери і клітина
Клітинна біологія
Субклітинна локалізація S6K1 і S6K2 форм кінази рибосомного білка S6 у тиреоцитах щурів за умов дво- та тривимірної культури
Cубклеточная локализация S6K1 и S6K2 форм киназы рибосомного белка S6 в тиреоцитах крыс в условиях двух- и трехмерной культуры
Subcellular localization of S6K1 and S6K2 forms of ribosomal protein S6 kinase in rat thyrocytes under conditions of two- and three-dimensional culture
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Субклітинна локалізація S6K1 і S6K2 форм кінази рибосомного білка S6 у тиреоцитах щурів за умов дво- та тривимірної культури
spellingShingle Субклітинна локалізація S6K1 і S6K2 форм кінази рибосомного білка S6 у тиреоцитах щурів за умов дво- та тривимірної культури
Хоруженко, А.І.
Чередник, О.В.
Філоненко, В.В.
Клітинна біологія
title_short Субклітинна локалізація S6K1 і S6K2 форм кінази рибосомного білка S6 у тиреоцитах щурів за умов дво- та тривимірної культури
title_full Субклітинна локалізація S6K1 і S6K2 форм кінази рибосомного білка S6 у тиреоцитах щурів за умов дво- та тривимірної культури
title_fullStr Субклітинна локалізація S6K1 і S6K2 форм кінази рибосомного білка S6 у тиреоцитах щурів за умов дво- та тривимірної культури
title_full_unstemmed Субклітинна локалізація S6K1 і S6K2 форм кінази рибосомного білка S6 у тиреоцитах щурів за умов дво- та тривимірної культури
title_sort субклітинна локалізація s6k1 і s6k2 форм кінази рибосомного білка s6 у тиреоцитах щурів за умов дво- та тривимірної культури
author Хоруженко, А.І.
Чередник, О.В.
Філоненко, В.В.
author_facet Хоруженко, А.І.
Чередник, О.В.
Філоненко, В.В.
topic Клітинна біологія
topic_facet Клітинна біологія
publishDate 2008
language Ukrainian
container_title Біополімери і клітина
publisher Інститут молекулярної біології і генетики НАН України
format Article
title_alt Cубклеточная локализация S6K1 и S6K2 форм киназы рибосомного белка S6 в тиреоцитах крыс в условиях двух- и трехмерной культуры
Subcellular localization of S6K1 and S6K2 forms of ribosomal protein S6 kinase in rat thyrocytes under conditions of two- and three-dimensional culture
description За умов моношарової культури тиреоцитів щура відбувається внутрішньоклітинний перерозподіл S6K1/2, які поряд з цитоплазмою детектуються у ядрах клітин. Метою роботи було дослідити зв’язок між активацією процесів міграції, проліферації, втрати фолікулярної організації тиреоцитів за різних умов культивування та субклітинною локалізацією S6K1/2. Виявлено загальне зростання вмісту S6K1/2 у проліферуючих клітинах. У тиреоцитах, культивованих у вигляді фолікулів, внутрішньоклітинна локалізація S6K1/2 не змінюється відносно нормальної тканини. Субклітинну релокалізацію S6K1/2 відзначено лише для окремої популяції клітин, що за певних причин втратили фолікулярну організацію і відповідно функціональну активність. Отже, зміна субклітинної локалізації S6K1/2 у культивованих тиреоцитах безпосередньо пов’язана зі зміною рівня диференціації на відміну від проліферації та міграції цих клітин. The aim of this work was to study the link between activation of processes of migration, proliferation, loss of thyrocyte follicle organization at different culture conditions and subcellular localization of S6K1/2. The subcellular redistribution of S6K1/2 takes place in the rat thyrocyte monolayer culture where S6K1/2 was detected not only in the cytoplasm but in the nuclei of cells as well|. In addition, the content of S6K1/2 in proliferating cells was increased. The subcellular| localization of S6K1/2 in thyrocytes cultivated as follicles was similar to that observed in normal thyroid tissue. Subcellular relocalization of S6K1/2 was detected only in certain cellular population, which for some reasons lost follicle organization and, consequently, functional activity. Thus, the changes in subcellular localization of S6K1/2 in cultivated thyrocytes are directly related to the level of differentiation, unlike proliferation and migration of these cells. В условиях монослойной культуры тиреоцитов крысы происходит внутриклеточное перераспределение S6K1/2, которые наряду с цитоплазмой детектируются в ядрах клеток. Цель работы состояла в изучении связи между активацией процессов миграции, пролиферации, потери фолликулярной организации тиреоцитов при разных условиях культивирования и субклеточной локализацией S6K1/2. Обнаружено общее повышение содержания S6K1/2 в пролиферирующих клетках. В тиреоцитах, культивируемых в виде фолликулов, внутриклеточная локализация S6K1/2 не изменялась по сравнению с нормальной тканью. Субклеточная релокализация S6K1/2 отмечена лишь для отдельной популяции клеток, которые по различным причинам теряли фолликулярную организацию и соответственно функциональную активность. Таким образом, изменение субклеточной локализации S6K1/2 в культивируемых тиреоцитах непосредственно связано с изменением уровня дифференциации в отличие от пролиферации и миграции этих клеток.
issn 0233-7657
url https://nasplib.isofts.kiev.ua/handle/123456789/157885
citation_txt Субклітинна локалізація S6K1 і S6K2 форм кінази рибосомного білка S6 у тиреоцитах щурів за умов дво- та тривимірної культури / А.І. Хоруженко, О.В. Чередник, В.В. Філоненко // Біополімери і клітина. — 2008. — Т. 24, № 6. — С. 470-475. — Бібліогр.: 20 назв. — укр., англ.
work_keys_str_mv AT horuženkoaí subklítinnalokalízacíâs6k1ís6k2formkínaziribosomnogobílkas6utireocitahŝurívzaumovdvotatrivimírnoíkulʹturi
AT čerednikov subklítinnalokalízacíâs6k1ís6k2formkínaziribosomnogobílkas6utireocitahŝurívzaumovdvotatrivimírnoíkulʹturi
AT fílonenkovv subklítinnalokalízacíâs6k1ís6k2formkínaziribosomnogobílkas6utireocitahŝurívzaumovdvotatrivimírnoíkulʹturi
AT horuženkoaí cubkletočnaâlokalizaciâs6k1is6k2formkinazyribosomnogobelkas6vtireocitahkrysvusloviâhdvuhitrehmernoikulʹtury
AT čerednikov cubkletočnaâlokalizaciâs6k1is6k2formkinazyribosomnogobelkas6vtireocitahkrysvusloviâhdvuhitrehmernoikulʹtury
AT fílonenkovv cubkletočnaâlokalizaciâs6k1is6k2formkinazyribosomnogobelkas6vtireocitahkrysvusloviâhdvuhitrehmernoikulʹtury
AT horuženkoaí subcellularlocalizationofs6k1ands6k2formsofribosomalproteins6kinaseinratthyrocytesunderconditionsoftwoandthreedimensionalculture
AT čerednikov subcellularlocalizationofs6k1ands6k2formsofribosomalproteins6kinaseinratthyrocytesunderconditionsoftwoandthreedimensionalculture
AT fílonenkovv subcellularlocalizationofs6k1ands6k2formsofribosomalproteins6kinaseinratthyrocytesunderconditionsoftwoandthreedimensionalculture
first_indexed 2025-11-25T16:08:49Z
last_indexed 2025-11-25T16:08:49Z
_version_ 1850519899446706176
fulltext CELL BIOLOGY Subcellular localization of S6K1 and S6K2 forms of ribosomal protein S6 kinase in rat thyrocytes under conditions of two- and three-dimensional culture A. I. Khoruzhenko, O. V. Cherednyk, V. V. Filonenko Institute of molecular biology and genetics NAS of Ukraine 150, Zabolotnogo Str, Kyiv Ukraine, 03680 a.i.khoruzhenko@imbg.org.ua The aim of this work was to study the link between activation of processes of migration, proliferation, loss of thyrocyte follicle organization at different culture conditions and subcellular localization of S6K1/2. The subcellular redistribution of S6K1/2 takes place in the rat thyrocyte monolayer culture where S6K1/2 was detected not only in the cytoplasm but in the nuclei of cells as well|. In addition, the content of S6K1/2 in proliferating cells was increased. The subcellular| localization of S6K1/2 in thyrocytes cultivated as follicles was similar to that observed in normal thyroid tissue. Subcellular relocalization of S6K1/2 was detected only in certain cellular population, which for some reasons lost follicle organization and, consequently, functional activity. Thus, the changes in subcellular localization of S6K1/2 in cultivated thyrocytes are directly related to the level of differentiation, unlike proliferation and migration of these cells. Keywords: ribosomal protein S6 kinase, thyrocytes, level of differentiation. Introduction. The main function of thyroid, as an endocrine organ, consists in the production of thyroid hormones which play an important role in the metabolism of human and mammalians. (A) Basic structural and functional unit of thyroid is a follicle, which consists of closed prismatic or cuboidal epithelium monolayer with an apical part forming a lumen. The latter is filled with a colloid which contains a glycoprotein thyroglobulin. Follicle organization of thyrocytes ensures the multistep process of thyroid hormones synthesis. It was shown on cultivated thyrocytes that the loss of follicle organization and depolarization lead to dedifferentiation of these cells and to a decrease in thyroglobulin content [1, 2]. The functions of thyroid are regulated by a few factors with the main role of pituitary thyroid stimulating hormone (TSH). It was shown, that TSH influences the thyroid cells through the Phosphatidylinositol 3-Kinase (PI3K) signal transduction pathway [3]. The link between the receptor of TSH and regulatory ð85a subunit of PI3K was demonstrated on cultivated thyrocytes. It was noted that TSH stimulates the interaction between the receptor of TSH and PI3K, which results in PI3K- and protein kinase A (PKA) dependent translocation of 470 ISSN 1993-6842. Biopolymers and cell. 2008. vol. 24. N 6. Translated from Ukrainian © A. I. KHORUZHENKO, O. V. CHEREDNYK, V. V. FILONENKO, 2008 phospholipid dependent kinase 1 (PDK1). TSH stimulates ribosomal protein kinase S6K through PI3K-, PDK1- and PKA dependent pathway and as a consequence affects in vitro proliferation and functional activity of follicular cells [4]. S6Ê belongs to (an) AGC family of serine/threonine protein kinases which includes protein kinase C, protein kinase B, SGKs, and 90 kDa ribosomal S6 protein kinase [5]. There are two forms of S6 kinase - S6Ê1 and S6Ê2 and each (of them) has cytoplasmic (S6Ê1II and S6Ê2 II) and nuclear (S6Ê1 I and S6Ê2 I) izoforms [6]. It was demonstrated that activity of S6Ê1/2 is regulated by phosphorylating/dephosphorylating in response to different extracellular stimuli, which include growth factors, cytokines and hormones. Nowadays no highly specific inhibitors of S6Ê are known. Numerous data demonstrate that PI3K/mTOR signalling pathway play(s) a key role in complete activating S6Ê. Earlier an analysis of S6K expression was performed on the tumours of human thyroid, normal tissue and cell lines [7, 8, and 9]. Overexpression of these kinases was detected in papillary carcinoma in comparison to normal tissue. Studies carried out by Western-blot analysis and immunohistochemical technique revealed cytoplasmic localization of S6K1 in normal tissue and in papillary carcinoma of human thyroid. We have shown that in rat thyroid gland S6Ê1 and S6Ê2 are localized mainly in the cytoplasm of thyrocytes [10]. At the cultivation of the isolated follicles of thyroid under the conditions of monolayer culture during spreading of follicles and loss of follicle organization of thyrocytes, a positive immunocytochemical reaction was detected not only in the cytoplasm but in the cell nuclei as well. Initially (the) S6K1/2 positive nuclei were detected on the edge of cell colonies, later a positive reaction was determined in the nuclei of all other cells [10]. These data led to an assumption about the link between activation of cell migration and subcellular redistribution of (the) indicated kinases. On the other side, it is known that S6Ê is involved in control of cell proliferation [11]. In the previous studies we didn’t found a correlation between the expression of Ki-67 antigen and the appearance of S6Ê in the nuclei of thyrocytes [10]. That is why a possible role of S6K1/2 in regulation of thyrocyte proliferation has to be studied further. Besides, it was shown that after 10-days of the cultivation of follicles under conditions of two-dimensional culture the content of thyroglobulin in thyrocytes is substantially diminished [10]. It points out a possible connection between the decline of functional activity of thyrocytes in vitro and the changes in subcellular localization of S6Ê1 and S6Ê2. Consequently, the process of thyrocyte cultivation is accompanied by activating the migration processes, cell proliferation and changes in tissue structural organization as well as the functional activity. However, it concerns to a lesser degree the follicles cultivation at under three-dimensional conditions [2]. The aim of this work was to study the relation between these processes and the content and subcellular localization of S6K1/2 in (the) thyrocytes cultivated under different culture conditions. The research included generation of the monolayer cultures and three-dimensional cultures with the maintenance of follicle organization of thyrocytes. The cell migration was studied as well using polycarbonate filters [2, 12] with a subsequent immunocytochemical analysis. The detection of proliferating cells and thyroglobulin content was carried out by the immunoperoxidase and immunofluorescence methods. Materials and methods. Reagents. Reagents for the cell culture and chemiluminiscent reagent were obtained from “Sigma” (USA). Antibodies to the thyroglobulin and Ki-67 were from “Dako” (Denmark); antibodies to mitogen-activated protein kinases (Phospho-p42-44 MAPK) were obtained from “BioLabs” (USA). Polyclonal and monoclonal antibodies to S6K1/2 were generated in our laboratory. Transwell with the pore diameter of polycarbonate membrane 8 mm were obtained from “Costar” (USA). Generation of thyrocyte cultures. The suspension of thyroid follicles from rats of Wistar line was obtained by the method described earlier [10]. Thyroid tissue was cut into small fragments, incubated with (the) mixture of collagenase/dispase with addition of trypsin inhibitor during 2 hours at 370C. Thereafter (the) growth medium (RPMI-1640, 17 % FCS, 4 mM 471 SUBCELLULAR LOCALIZATION OF S6K1 AND S6K2 FORMS OF RIBOSOMAL PROTEIN S6 KINASE IN RAT THYROCYTES glutamine, 50 u/ml of penicillin, 50 mg/ml streptomycin, 1 mg/ml amphotericin B) was added. The disaggregated material was filtered through a nylon mesh with (the) pore diameter (of) 180 mm and collected on a nylon filter with (the) pore diameter (of) 30 mm. The isolated follicles were washed with (the) growth medium and centrifuged. To obtain the monolayer cultures the follicles were cultivated in Petry dishes. The cultures of aggregates of follicles were obtained on dishes, preliminary coated with 1 % agarose. Cultivation was carried out at 37 0 C, in a humidified gas phase 7 % CO2/air. Migration of thyrocytes through Transwell. The suspension of follicles was transferred into the upper chamber of transwell, in RPMI-1640 supplemented with 1 % human serum albumin, 4 mM glutamine and (the) mixture of antibiotics. The lower chamber contained RPMI-1640 with 20 % FCS to stimulate the chemotaxis of thyrocytes. (The) Cultivation was carried out for 4 days; the medium in lower and upper chambers was changed daily. (The) Filters were fixed with methanol for 5 min, cells in the upper chamber were removed by a cotton tampon, retaining the cells that migrated to the opposite filter surface. Immunocytochemical and immunohistochemical analysis. Detections of thyroglobulin (TG), S6K1 and S6K2 were performed by the indirect immunoperoxidase method on the paraffin sections of the cultivated aggregates of follicles, monolayer cultures and in the thyrocytes, cultivated in transwells. Histological sections were deparaffinised and rehydrated. Endogenous peroxidase was quenched with 3 % H2O2 for 30 min. After blocking non-specific binding by 10 % FCS, (the) sections were incubated with primary monoclonal antibodies (S6K1, 1:50; S6K2, 1:200; TG, 1:100) for 90 min at 370C. Incubation with the secondary antibodies, labelled with peroxidase, was carried out for 1 h at 370C. The reaction proceeded in 3, 3’-diaminobenzidine tetrachloride solution. For double immunochemical reaction the first antigen was detected by the immunoenzymatic method using corresponding first antibodies (anti-thyroglobulin 1: 100, anti-MARK 1: 50, anti- Ki-67 1: 50) and secondary antibodies labelled with horse- radishperoxidase. S6K1 and S6K2 were determined by the immunofluorescent method, using the secondary antibodies labelled with FITC. To decrease the autofluorescence background the preparations were incubated for 30 min in 10 mM CuSO4 and 50 mM of CH3COONH4 at pH 5.0. Control preparations were incubated without primary antibodies. All experiments were repeated no less than 3 times. Microscopic studies were carried out using Leica DM1000 microscope (Germany). Results and discussion. To detect S6K1/2 in proliferating thyrocytes in monolayer cultures a double immunocytochemical staining was applied. This approach was initially tested using the MCF-7 cell line which is characterized by a high level of the ribosomal protein S6 kinases expression. The data obtained demonstrate that after three days of incubation of follicles suspension at the conditions of (the) monolayer culture an amount of proliferating cells positive for Ki-67 antigen was insufficient. Starting from (the) sixth day of cultivation the number of Ki-67 positive cells increased. In these thyrocytes the increased reaction on S6K1 and S6K2 was revealed as well (Fig. 1, b, d). In addition, double immunocytochemical staining of activated MAP kinases and S6K1 or S6K2 in thyrocytes was carried out. Like in the case of Ki-67 antigen in the cells positive on phosphorylated MAP kinases (Fig. 1, e, g), an increased reaction on S6K1/S6K2 (Fig. 1, f, h) was detected. Thus, on a primary culture of rat thyrocytes an increased content of S6K1/S6K2 in proliferating cells was demonstrated. The obtained results correlate with the literature data on the involvement of S6K in regulation of cell proliferation. (An) Activation of S6K1 and MARK was revealed during stimulation of human endothelial cells proliferation by angiopoetin [13]. In addition, the activation of protein synthesis, mediated by S6K in the human vascular endothelium, was determined as a key stage in passage through the cell cycle [14]. In the inducible mice tumours producing TSH, the activation of S6K was detected at aberrant pituitary growth [15]. However, as we reported earlier (,) the alterations in subcellular localization of S6K1/2 kinases are not connected directly with proliferation of thyrocytes [10]. 472 KHORUZHENKO A. I , CHEREDNYK O. V., FILONENKO V. V. For the detection of S6K1 and S6K2 localization in migrating rat thyrocytes the transwells were used. Since the initiating of thyrocytes migration through a porous membrane requires follicles attachment to the plastic surface and their spreading out, the cultivation of follicles was carried out for 4 days. This term of cultivation was chosen experimentally. In the control experiments to avoid the stimulation of chemotaxis, the contents of FCS in upper and lower chambers were identical. The cells were fixed on membranes with methanol with subsequent immunocytochemical determination of a subcellular localization of S6K1 and S6K2. On the opposite side of the membrane the colonies of migrating cells of the regular shape or lacking central part were found. This fact leads to the assumption that the boundary cells, unlike those located in a centre of the colony have higher mobility potential. In thyrocytes migrating to the opposite surface of the membrane, and also in those which remained on topside, the localization of S6K1 and S6K2 was predominantly cytoplasmic (Fig. 2). There are no literature data concerning subcellular localization of S6K1/2 in migrating thyrocytes. However, there are some data relating to the participation of PI3K signal pathway and S6K in migration. Recently it was shown that suppression of mTOR by rapamycin leads to inactivation of this pathway that in turn inhibits (in dose-dependent manner) the migration of the NUGC4 line cells, which originate from the carcinoma of stomach [16]. The above-mentioned data are in accordance with the work of Zhou H.Y. performed on the cells of ovarian carcinoma. It was shown that the constitutively active form of S6K1 caused induction of invasive and migratory phenotype of cells. In addition, activating S6K1 predetermined an increase in the expression level and proteolytic activity of matrix metalloproteinases, in particular MMP-9 [17]. Our data do not exclude a possibility of activation of indicated kinases in a cytoplasm of thyrocytes, but point out that appearance of S6K1 and S6K2 in the nuclei does not relate to the cell migration. Earlier we have shown that dedifferentiation of thyrocytes is accompanied by subcellular relocalization of S6K1 and S6K2 in the monolayer culture [10]. That is why (in this work) we studied subcellular localization of S6K1/2 in thyrocytes of the follicles cultivated on the agarose layer at conditions when the follicles form aggregates and keep tissue organization of the thyroid cells. However, because of partial damage during isolation the follicles collapsed which resulted in aggregate areas with lost follicle organization. The aggregates of follicles were fixed and then (the) localization of indicated kinases was determined immunohistochemically on 3d, 6th and 10th days of cultivation (Fig. 3). It was revealed that in the areas with the follicle structure organization S6K1 and S6K2 were localized mainly in a cytoplasm of thyrocytes. It should be noted that the maintenance or loss of follicle organization at cultivation under three-dimensional conditions correlated with the functional state of thyrocytes that was determined by thyroglobulin content in the cells (Fig. 4 a, c). It was detected that cells in follicles were positive on a thyroglobulin, however, the cells with lost primary tissue organization did not contain a thyroglobulin which indicated the decreased level of their functional activity. Double immunohistochemical detection of thyroglobulin and S6K1/S6K2 in the cells was performed. In the cells containing thyroglobulin S6K1 and S6K2 had mainly cytoplasm localization, as well as those in the initial rat thyroid tissue. After 10 days of cultivation in the population of cells which did not save the follicle organization and, accordingly, did not contain thyroglobulin the positive reaction on S6K1/2 was detected in thyrocyte nuclei as well as in the case of prolongated thyrocyte cultivation in the monolayer culture (Fig. 4). In addition, the immunostaining of S6K1/2 in the thyroglobulin negative cells was greater than in the cells containing thyroglobulin. These findings enable to suggest that ribosomal protein S6 kinases – S6K1 and S6K2 - are involved into the process of thyrocytes differentiation. At condition of artificially initiated dedifferentiation there is a relocalization of these kinases in comparison with the normal thyroid tissue. The role of S6K in differentiation was studied previously on neural cells, neutrophiles and other types of cells [18, 19]. It was shown that suppression of S6K1 delays the differentiation of neural cells. It should be noted that (earlier in our laboratory was demonstrated) the 473 SUBCELLULAR LOCALIZATION OF S6K1 AND S6K2 FORMS OF RIBOSOMAL PROTEIN S6 KINASE IN RAT THYROCYTES presence of positive reaction on S6K2 in the nuclei of human breast carcinoma cells, which was not observed in normal tissue. Besides, it was revealed that the amount of S6K1/2 detected in nuclei of malignant cells increased considerably in the tumours of low differentiation grade [20]. Thus, our data demonstrate that the proliferation and migration of thyroid cells in vitro are not associated directly with the changes in S6K1 and S6K2 localization. Alternatively, the connection between cell proliferation and increase of S6 kinases cell content has been shown. As a result of the performed research, the dependence between subcellular localization of S6K1/2 and functional state of thyrocytes has been found that can be useful for an analysis of different compounds modulating the thyroid function at pathology. À. ². Õî ðó æåí êî, Î. Â. ×å ðåä íèê, Â. Â. Ô³ëî íåí êî Ñóáêë³òèí íà ëî êàë³çàö³ÿ S6K1 ³ S6K2 ôîðì ê³íàçè ðè áî ñîì íî ãî á³ëêà S6 ó òè ðå î öè òàõ ùóð³â çà óìîâ äâî- òà òðè âèì³ðíî¿ êóëü - òó ðè Ðå çþ ìå Çà óìîâ ìî íî øà ðî âî¿ êóëü òó ðè òè ðå î öèò³â ùóðà â³äáó âàºòüñÿ âíóòð³øíüîêë³òèí íèé ïå ðå ðîç ïîä³ë S6K1/2, ÿê³ ïî ðÿä ç öè òîï - ëàç ìîþ äå òåê òó þòü ñÿ ó ÿä ðàõ êë³òèí. Ìå òîþ ðî áî òè áóëî äîñë³äèòè çâ’ÿ çîê ì³æ àê òè âàö³ºþ ïðî öåñ³â ì³ãðàö³¿, ïðîë³ôå - ðàö³¿, âòðà òè ôîë³êó ëÿð íî¿ îðãàí³çàö³¿ òè ðå î öèò³â çà ð³çíèõ óìîâ êóëü òè âó âàí íÿ òà ñóá êë³òèí íîþ ëî êàë³çàö³ºþ S6K1/2. Âè - ÿâ ëå íî çà ãàëü íå çðîñ òàí íÿ âì³ñòó S6K1/2 ó ïðîë³ôå ðó þ ÷èõ êë³òè íàõ. Ó òè ðå î öè òàõ, êóëü òè âî âà íèõ ó âèã ëÿä³ ôîë³êóë³â, âíóòð³øíüîêë³òèí íà ëî êàë³çàö³ÿ S6K1/2 íå çì³íþºòüñÿ â³äíîñ - íî íîð ìàëü íî¿ òêà íè íè. Ñóáêë³òèí íó ðå ëî êàë³çàö³þ S6K1/2 â³äçíà ÷å íî ëèøå äëÿ îêðå ìî¿ ïî ïó ëÿö³¿ êë³òèí, ùî çà ïåâ íèõ ïðè - ÷èí âòðà òè ëè ôîë³êó ëÿð íó îðãàí³çàö³þ ³ â³äïîâ³äíî ôóíêö³îíàëü íó àê òèâí³ñòü. Îòæå, çì³íà ñóá êë³òèí íî¿ ëî - êàë³çàö³¿ S6K1/2 ó êóëü òè âî âà íèõ òè ðå î öè òàõ áåç ïî ñå ðåä íüî ïî â’ÿ çà íà ç³ çì³íîþ ð³âíÿ äè ôå ðåíö³àö³¿ íà â³äì³íó â³ä ïðîë³ôå - ðàö³¿ òà ì³ãðàö³¿ öèõ êë³òèí. Êëþ ÷îâ³ ñëî âà: ê³íàçà ðè áî ñîì íî ãî á³ëêà S6, òè ðå î öè òè, ð³âåíü äè ôå ðåíö³àö³¿. À. È. Õî ðó æåí êî, Î. Â. ×å ðåä íèê, Â. Â. Ôè ëî íåí êî Cóá êëå òî÷íàÿ ëî êà ëè çà öèÿ S6K1 è S6K2 ôîðì êè íà çû ðè áî ñîì íî ãî áåë êà S6 â òè ðå î öè òàõ êðûñ â óñëî âè ÿõ äâóõ- è òðåõ ìåð íîé êóëü òó ðû Ðå çþ ìå  óñëî âè ÿõ ìî íîñ ëîé íîé êóëü òó ðû òè ðå î öè òîâ êðû ñû ïðî èñ õî - äèò âíóò ðèê ëå òî÷ íîå ïå ðåðàñ ïðå äå ëå íèå S6K1/2, êî òî ðûå íà - ðÿ äó ñ öè òîï ëàç ìîé äå òåê òè ðó þò ñÿ â ÿä ðàõ êëå òîê. Öåëü ðà áî òû ñî ñòî ÿ ëà â èç ó÷å íèè ñâÿ çè ìåæ äó àê òè âà öè åé ïðî öåñ ñîâ ìèã ðà öèè, ïðî ëè ôå ðà öèè, ïî òå ðè ôîë ëè êó ëÿð íîé îðãà íè çà öèè òè ðå î öè òîâ ïðè ðàç íûõ óñëî âè ÿõ êóëü òè âè ðî âà - íèÿ è ñóá êëå òî÷ íîé ëî êà ëè çà öè åé S6K1/2. Îáíà ðó æå íî îá ùåå ïî âû øå íèå ñî äåð æà íèÿ S6K1/2 â ïðî ëè ôå ðè ðó þ ùèõ êëåò êàõ.  òè ðå î öè òàõ, êóëü òè âè ðó å ìûõ â âèäå ôîë ëè êó ëîâ, âíóò ðèê ëå - òî÷ íàÿ ëî êà ëè çà öèÿ S6K1/2 íå èç ìå íÿ ëàñü ïî ñðàâ íå íèþ ñ íîð - ìàëü íîé òêàíüþ. Ñóá êëå òî÷ íàÿ ðå ëî êà ëè çà öèÿ S6K1/2 îò ìå ÷å íà ëèøü äëÿ îò äåëü íîé ïî ïó ëÿ öèè êëå òîê, êî òî ðûå ïî ðàç ëè÷ íûì ïðè ÷è íàì òå ðÿ ëè ôîë ëè êó ëÿð íóþ îðãà íè çà öèþ è ñî - îò âå òñòâåí íî ôóíê öè î íàëü íóþ àê òèâ íîñòü. Òà êèì îá ðà çîì, èç ìå íå íèå ñóá êëå òî÷ íîé ëî êà ëè çà öèè S6K1/2 â êóëü òè âè ðó å - ìûõ òè ðå î öè òàõ íå ïîñ ðå äñòâåí íî ñâÿ çà íî ñ èç ìå íå íè åì óðîâ - íÿ äèô ôå ðåí öè à öèè â îò ëè ÷èå îò ïðî ëè ôå ðà öèè è ìèã ðà öèè ýòèõ êëå òîê. Êëþ ÷å âûå ñëî âà: êè íà çà ðè áî ñîì íî ãî áåë êà S6, òè ðå î öè òû, óðî âåíü äèô ôå ðåí öè à öèè. REFERENCES 1. Westermark B., Heldin N., Westermark K. Structural and functional properties of thyroid follicle cell in culture // Acta Physiol. Scand. Suppl.–1990.–592.–P. 15–24. 2. Khoruzhenko A. New approaches for thyrocyte cultivation in vitro with retention of their follicular organization // Exp. Oncol.–2002.–24.–P. 99–104. 3. Medina D., Santisteban P. Thyrotropin-dependent prolifera- tion of in vitro rat thyroid cell systems // Eur. J. Endocrinol.– 2000.–143.–P. 161–178. 4. Suh J. M., Song J. H., Kim D. W., Kim H., Chung H. K., Hwang J. H., Kim J. M., Hwang E. S., Chung J., Han J. H., Cho B. Y., Ro H. K., Shong M. Regulation of the phosphatidylinositol 3-kinase, Akt/protein kinase B, FRAP/mammalian target of rapamycin, and ribosomal S6 kinase 1 signaling pathways by thyroid-stimulating hormone (TSH) and stimulating type TSH receptor antibodies in the thyroid gland // J. Biol. Chem.–2003.–278, N 24.–P. 21960– 21967. 5. Valovka T., Verdier F., Cramer R., Zhyvoloup A., Fenton T., Rebholz H., Wang M., Gzhegotsky M., Lutsyk A., Matsuka G., Filonenko V., Wang L., Proud C., Parker P., Gout I. Protein kinase c phosphorylates ribosomal protein S6 kinase betta II and regulates its subcellular localization // Mol. Cell. Biol.– 2003.–23, N 3.–P. 852–863. 6. Ruvinsky I. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size // Trends Biochem. Sci.–2006.– 31, N 6.–P. 342–8. 7. Miyakawa M., Tsushima T., Murakami H., Wakai K., Isozaki O., Takano K. Increased expression of phosphorylated p70S6 kinase and Akt in papillary thyroid cancer tissues // Endocrinol. J.–2003.–50, N 1.–P. 77–83. 8. Lyzogubov V., Usenko V., Khojaenko Yu., Lytvyn D., Soldat- kina M., Rodnin N., Filonenko V., Pogribniy P. Immuno- histochemical analysis of p70S6 kinase in a human thyroid tissue upon pathology // Exp. Oncol.–2003.–25, N 4.–P. 304– 306. 9. Coulonval K., Vandeput F., Stein R., Kozma S., Lamy F., Dumont J. Phosphatidylinositol 3-kinase, protein kinase B and ribosomal S6 kinases in the stimulation of thyroid epithelial cell proliferation by cAMP and growth factors in the presence of insulin // Biochem. J.–2000.–348, N 2.– P. 351–358. 474 KHORUZHENKO A. I , CHEREDNYK O. V., FILONENKO V. V. 475 SUBCELLULAR LOCALIZATION OF S6K1 AND S6K2 FORMS OF RIBOSOMAL PROTEIN S6 KINASE IN RAT THYROCYTES 10. Khoruzhenko A. I., Cherednyk O. V., Filonenko V. V. Subcellular localization of S6K1 and S6K2 forms of ribosomal protein S6 kinase in primary monolayer culture of rat thyrocytes // Á³îïîë³ìåðè ³ êë³òèíà.–2008.–24, ¹ 1.– P. 35–40. 11. Ouyang W., Li J., Ma Q., Huang C. Essential roles of PI- 3K/Akt/IKKbeta/NFkappaB pathway in cyclin D1 induction by arsenite in JB6 Cl41 cells // Carcinogenesis.–2006.–27, N 4.–P. 864–873. 12. Vuillermoz B., Khoruzhenko A., D’Onofrio M. F., Ramont L., Venteo L., Perreau C., Antonicelli F., Maquart F. X., Wegrowski Y. The small leucine-rich proteoglycan lumican inhibits melanoma progression // Exp. Cell Res.–2004.–296, N 2.–P. 294–306. 13. Kanda S., Miyata Y., Mochizuki Y., Matsuyama T., Kanetake H. Angiopoietin 1 is mitogenic for cultured endothelial cells // Cancer Res.–2005.–65, N 15.–P. 6820–6827. 14. Vinals F., Chambard J. C., Pouyssegur J. p70 S6 kinase- mediated protein synthesis is a critical step for vascular endothelial cell proliferation // J. Biol. Chem.– 1999.–274, N 38.–P. 26776–26782. 15. Lu C., Willingham M., Furuya F., Cheng S. Activation of phosphatidylinositol 3-kinase signaling promotes aberrant pituitary growth in a mouse model of thyroid-stimulating hormone-secreting pituitary tumors // Endocrinology.– 2008.–149, N 7.–P. 3339–3345. 16. Hashimoto I., Koizumi K., Tatematsu M., Minami T., Cho S., Takeno N., Nakashima A., Sakurai H., Saito S., Tsukada K., Saiki I. Blocking on the CXCR4/mTOR signalling pathway induces the anti-metastatic properties and autophagic cell death in peritoneal disseminated gastric cancer cells // Eur. J. Cancer.–2008.–44, N 7.–P. 1022–1029. 17. Zhou H. Y., Wong A. S. Activation of p70S6K induces expression of matrix metalloproteinase 9 associated with hepatocyte growth factor-mediated invasion in human ovarian cancer cells // Endocrinology.–2006.–147, N 5.– P. 2557–2566. 18. Kanayasu-Toyoda T., Yamaguchi T., Oshizawa T., Kogi M., Uchida E., Hayakawa T. Role of the p70 S6 kinase cascade in neutrophilic differentiation and proliferation of HL-60 cells – a study of transferrin receptor-positive and -negative cells obtained from dimethyl sulfoxide- or retinoic acid- treated HL-60 cells // Arch. Biochem. Biophys.–2002.–405, N 1.–P. 21–31. 19. McNeill H., Craig G. M., Bateman J. M. Regulation of neurogenesis and epidermal growth factor receptor signaling by the insulin receptor/target of rapamycin pathway in Drosophila // Genetics.–2008.–179, N 2.–P. 843–853. 20. Savinska L., Lyzogubov V., Usenko .V, Ovcharenko G., Gorbenko O., Rodnin N., Vudmaska M., Pogribnij P., Kyyamova R., Panasyuk G., Nemazanyy I., Malets M., Palchevskyy S., Gout I., Filonenko V. Immunohistochemical analysis of S6K1 and S6K2 expression in human breast tumors // Exp. Oncol.–2004.–26, N 1.–P. 24–30. UDC 577.25, 591.87, 611.44 Received 15.05.08 ISSN 1993-6842. Biopolymers and cell. 2008. vol. 24. N 6. Translated from Ukrainian Fig. 1. Dou ble im mu - no chemi cal de tec tion of Ki-67, MAPK, S6K1 and S6K2 in rat thyrocytes un der con di - tions of monolayer cul - ture. a, c, e, g – immunoperoxidase re - ac tion; b, d, f , h – immunofluorescent re - ac tion. a, c – de tec tion of an an ti gen Ki-67, b, d - de tec tion of S6K1 and S6K2 cor re spond ingly in the same thyrocytes, both ar rows show the same cell. e, g – de tec - tion of MAPK, Oc u lar x10, objective x40. a b c e g d f h ISSN 1993-6842. Biopolymers and cell. 2008. vol. 24. N 6. Translated from Ukrainian Fig. 2. Imunoperoxidase detection of localization of S6K1 (a, c) and S6K2 (b, d) in thyrocytes on the topside of transwell membrane (a, b) and on a lower surface after migration (c, d). There is cytoplasmic localization of S6K1/2 in all cases. During migration of thyrocytes from the spreaded follicle, the cells located at an edge of the colonies migrate faster than the cells of central area (Fig. 2Â.) Ocular x10, objective x5. a b c d ISSN 1993-6842. Biopolymers and cell. 2008. vol. 24. N 6. Translated from Ukrainian Fig. 3. Detection of subcellular localization of S6K1 (a, c, e) and S6K2 (b, d, f) in the cells of aggregates of follicles cultivated under three-dimensional conditions for 3 days (a, b), 6 days (c, d) and 10 days (e, f). There is mainly cytoplasmic localization of indicated kinases in thyrocytes. Ocular x10, objective x40. a b c d e f S6K1 S6K2 3 ya D 6 ya D 9 ya D ISSN 1993-6842. Biopolymers and cell. 2008. vol. 24. N 6. Translated from Ukrainian Fig. 4. Double immunocytochemical detection of colocalization of thyroglobulin (a, c – immunoperoxidase method) and S6K1/2 (accordingly, b, d – immunofluorescent method) in the aggregates of follicles on the 10th day of cultivation. Arrows show areas where a follicle structure and thyroglobulin are absent. In thyrocytes without thyroglobulin S6K1/2 positive nuclei are revealed. Ocular x 10, objective x 40. a b c d