Исследование одного класса диофантовых уравнений

Розглядається питання про існування розв'язків рівняння X/Y+Y/Z+Z/X=m в натуральних числах при різних m ∈ N. Доведено, що при m=a2+5, a ∈ Z рівняння має розв'язки в натуральних числах, а при m=4p², p ∈ N, р не ділиться на 3, не має розв'язків. Також доведено, що при n ≥ 12 рівняння b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний журнал
Datum:2000
1. Verfasser: Бондаренко, А.В.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут математики НАН України 2000
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/157909
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Исследование одного класса диофантовых уравнений / А.В. Бондаренко // Український математичний журнал. — 2000. — Т. 52, № 6. — С. 831–836. — Бібліогр.: 3 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Розглядається питання про існування розв'язків рівняння X/Y+Y/Z+Z/X=m в натуральних числах при різних m ∈ N. Доведено, що при m=a2+5, a ∈ Z рівняння має розв'язки в натуральних числах, а при m=4p², p ∈ N, р не ділиться на 3, не має розв'язків. Також доведено, що при n ≥ 12 рівняння b1/b2+b2/b3+⋯+bn−1/bn+bn/b1=m має розв'язки в натуральних числах тоді і тільки тоді, коли m ≥ n, m ∈ N. We consider the problem of existence of solutions of the equation X/Y+Y/Z+Z/X=m in natural numbers for different m ∈ N. We prove that this equation possesses solutions in natural numbers for m=a2+5, a ∈ Z, and does not have solutions if m = 4p², p ∈ N, andp is not divisible by 3. We also prove that, for n ≥ 12, the equation b1/b2+b2/b3+⋯+bn−1/bn+bn/b1=m possesses solutions in natural numbers if and only if m ≥ n, m ∈ N.
ISSN:1027-3190