On characteristic properties of semigroups
Let K be a class of semigroups and P be a set of general properties of semigroups. We call a subset Q of P characteristic for a semigroup S ∈ K if, up to isomorphism and antiisomorphism, S is the only semigroup in K, which satisfies all the properties from Q. The set of properties P is called char...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2015 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2015
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/157998 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On characteristic properties of semigroups / V.M. Bondarenko, Ya.V. Zaciha // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 32–39. — Бібліогр.: 1 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Let K be a class of semigroups and P be a set of general properties of semigroups. We call a subset Q of P characteristic for a semigroup S ∈ K if, up to isomorphism and antiisomorphism, S is the only semigroup in K, which satisfies all the properties from Q.
The set of properties P is called char-complete for K if for any S ∈ K the set of all properties
P ∈ P, which hold for the semigroup S, is characteristic for S. We indicate a 7-element set of properties of semigroups which is a minimal char-complete set for the class of semigroups of order 3.
|
|---|---|
| ISSN: | 1726-3255 |