On the units of integral group ring of Cn × C₆

There are many kind of open problems withvarying difficulty on units in a given integral group ring. In thisnote, we characterize the unit group of the integral group ring of Cn × C₆ where Cn = 〈a: aⁿ = 1〉 and C₆ = 〈x: x⁶ = 1〉. We show that U₁(Z[Cn × C₆]) can be expressed in terms of its 4 subgroups...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2015
Автор: Küsmüş, Ö.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2015
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/158005
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the units of integral group ring of Cn × C₆ / Ö. Küsmüş // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 1. — С. 142–151. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-158005
record_format dspace
spelling Küsmüş, Ö.
2019-06-22T12:26:47Z
2019-06-22T12:26:47Z
2015
On the units of integral group ring of Cn × C₆ / Ö. Küsmüş // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 1. — С. 142–151. — Бібліогр.: 11 назв. — англ.
1726-3255
2010 MSC:16U60, 16S34.
https://nasplib.isofts.kiev.ua/handle/123456789/158005
There are many kind of open problems withvarying difficulty on units in a given integral group ring. In thisnote, we characterize the unit group of the integral group ring of Cn × C₆ where Cn = 〈a: aⁿ = 1〉 and C₆ = 〈x: x⁶ = 1〉. We show that U₁(Z[Cn × C₆]) can be expressed in terms of its 4 subgroups. Furthermore, forms of units in these subgroups are described by the unit group U₁(ZCn).
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On the units of integral group ring of Cn × C₆
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the units of integral group ring of Cn × C₆
spellingShingle On the units of integral group ring of Cn × C₆
Küsmüş, Ö.
title_short On the units of integral group ring of Cn × C₆
title_full On the units of integral group ring of Cn × C₆
title_fullStr On the units of integral group ring of Cn × C₆
title_full_unstemmed On the units of integral group ring of Cn × C₆
title_sort on the units of integral group ring of cn × c₆
author Küsmüş, Ö.
author_facet Küsmüş, Ö.
publishDate 2015
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description There are many kind of open problems withvarying difficulty on units in a given integral group ring. In thisnote, we characterize the unit group of the integral group ring of Cn × C₆ where Cn = 〈a: aⁿ = 1〉 and C₆ = 〈x: x⁶ = 1〉. We show that U₁(Z[Cn × C₆]) can be expressed in terms of its 4 subgroups. Furthermore, forms of units in these subgroups are described by the unit group U₁(ZCn).
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/158005
citation_txt On the units of integral group ring of Cn × C₆ / Ö. Küsmüş // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 1. — С. 142–151. — Бібліогр.: 11 назв. — англ.
work_keys_str_mv AT kusmuso ontheunitsofintegralgroupringofcnc6
first_indexed 2025-12-07T18:32:49Z
last_indexed 2025-12-07T18:32:49Z
_version_ 1850875439096004608