On the structure of groups, whose subgroups are either normal or core-free

We investigate the influence of some natural types of subgroups on the structure of groups. A subgroup H of the group G is called core-free if CoreG(H) = 〈1〉. We study the groups, in which every subgroup is either normal or core-free. More precisely, we obtain the structures of monolithic and non-...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Доповіді НАН України
Дата:2019
Автори: Kurdachenko, L.A., Pypka, A.A., Subbotin, I.Ya.
Формат: Стаття
Мова:English
Опубліковано: Видавничий дім "Академперіодика" НАН України 2019
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/158089
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the structure of groups, whose subgroups are either normal or core-free / L.A. Kurdachenko, A.A. Pypka, I.Ya. Subbotin // Доповіді Національної академії наук України. — 2019. — № 4. — С. 17-20. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-158089
record_format dspace
spelling Kurdachenko, L.A.
Pypka, A.A.
Subbotin, I.Ya.
2019-07-12T19:33:37Z
2019-07-12T19:33:37Z
2019
On the structure of groups, whose subgroups are either normal or core-free / L.A. Kurdachenko, A.A. Pypka, I.Ya. Subbotin // Доповіді Національної академії наук України. — 2019. — № 4. — С. 17-20. — Бібліогр.: 8 назв. — англ.
1025-6415
DOI: doi.org/10.15407/dopovidi2019.04.017
https://nasplib.isofts.kiev.ua/handle/123456789/158089
512.544
We investigate the influence of some natural types of subgroups on the structure of groups. A subgroup H of the group G is called core-free if CoreG(H) = 〈1〉. We study the groups, in which every subgroup is either normal or core-free. More precisely, we obtain the structures of monolithic and non-monolithic groups with this property.
Досліджується вплив деяких природних типів підгруп на структуру груп. Підгрупу H групи G називаємо вільною від ядра, якщо CoreG(H) = 〈1〉 . Вивчено групи, в яких кожна підгрупа або нормальна, або вільна від ядра. Точніше, одержано будову монолітичних та немонолітичних груп з цією властивістю.
Исследуется влияние некоторых естественных типов подгрупп на структуру групп. Подгруппу H группы G называем свободной от ядра, если CoreG(H) = 〈1〉 . Изучены группы, в которых каждая подгруппа либо нормальна, либо свободна от ядра. Точнее, получена структура монолитических и немонолитических групп с этим свойством.
en
Видавничий дім "Академперіодика" НАН України
Доповіді НАН України
Математика
On the structure of groups, whose subgroups are either normal or core-free
Про структуру груп, підгрупи яких або нормальні, або вільні від ядра
О структуре групп, подгруппы которых либо нормальны, либо свободны от ядра
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the structure of groups, whose subgroups are either normal or core-free
spellingShingle On the structure of groups, whose subgroups are either normal or core-free
Kurdachenko, L.A.
Pypka, A.A.
Subbotin, I.Ya.
Математика
title_short On the structure of groups, whose subgroups are either normal or core-free
title_full On the structure of groups, whose subgroups are either normal or core-free
title_fullStr On the structure of groups, whose subgroups are either normal or core-free
title_full_unstemmed On the structure of groups, whose subgroups are either normal or core-free
title_sort on the structure of groups, whose subgroups are either normal or core-free
author Kurdachenko, L.A.
Pypka, A.A.
Subbotin, I.Ya.
author_facet Kurdachenko, L.A.
Pypka, A.A.
Subbotin, I.Ya.
topic Математика
topic_facet Математика
publishDate 2019
language English
container_title Доповіді НАН України
publisher Видавничий дім "Академперіодика" НАН України
format Article
title_alt Про структуру груп, підгрупи яких або нормальні, або вільні від ядра
О структуре групп, подгруппы которых либо нормальны, либо свободны от ядра
description We investigate the influence of some natural types of subgroups on the structure of groups. A subgroup H of the group G is called core-free if CoreG(H) = 〈1〉. We study the groups, in which every subgroup is either normal or core-free. More precisely, we obtain the structures of monolithic and non-monolithic groups with this property. Досліджується вплив деяких природних типів підгруп на структуру груп. Підгрупу H групи G називаємо вільною від ядра, якщо CoreG(H) = 〈1〉 . Вивчено групи, в яких кожна підгрупа або нормальна, або вільна від ядра. Точніше, одержано будову монолітичних та немонолітичних груп з цією властивістю. Исследуется влияние некоторых естественных типов подгрупп на структуру групп. Подгруппу H группы G называем свободной от ядра, если CoreG(H) = 〈1〉 . Изучены группы, в которых каждая подгруппа либо нормальна, либо свободна от ядра. Точнее, получена структура монолитических и немонолитических групп с этим свойством.
issn 1025-6415
url https://nasplib.isofts.kiev.ua/handle/123456789/158089
citation_txt On the structure of groups, whose subgroups are either normal or core-free / L.A. Kurdachenko, A.A. Pypka, I.Ya. Subbotin // Доповіді Національної академії наук України. — 2019. — № 4. — С. 17-20. — Бібліогр.: 8 назв. — англ.
work_keys_str_mv AT kurdachenkola onthestructureofgroupswhosesubgroupsareeithernormalorcorefree
AT pypkaaa onthestructureofgroupswhosesubgroupsareeithernormalorcorefree
AT subbotiniya onthestructureofgroupswhosesubgroupsareeithernormalorcorefree
AT kurdachenkola prostrukturugruppídgrupiâkihabonormalʹníabovílʹnívídâdra
AT pypkaaa prostrukturugruppídgrupiâkihabonormalʹníabovílʹnívídâdra
AT subbotiniya prostrukturugruppídgrupiâkihabonormalʹníabovílʹnívídâdra
AT kurdachenkola ostrukturegrupppodgruppykotoryhlibonormalʹnylibosvobodnyotâdra
AT pypkaaa ostrukturegrupppodgruppykotoryhlibonormalʹnylibosvobodnyotâdra
AT subbotiniya ostrukturegrupppodgruppykotoryhlibonormalʹnylibosvobodnyotâdra
first_indexed 2025-11-24T02:44:21Z
last_indexed 2025-11-24T02:44:21Z
_version_ 1850838608177528832
fulltext 17ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2019. № 4 doi: https://doi.org/10.15407/dopovidi2019.04.017 UDC 512.544 L.A. Kurdachenko 1, A.A. Pypka 1, I.Ya. Subbotin 2 1 Oles Honchar Dnipro National University, Ukraine 2 National University, Los Angeles, USA E-mail: lkurdachenko@i.ua, pypka@ua.fm, isubboti@nu.edu On the structure of groups, whose subgroups are either normal or core-free Presented by Corresponding Member of the NAS of Ukraine V.P. Motornyi We investigate the influence of some natural types of subgroups on the structure of groups. A subgroup H of the group G is called core-free if Core ( )G H = 〈1〉. We study the groups, in which every subgroup is either normal or core-free. More precisely, we obtain the structures of monolithic and non-monolithic groups with this property. Keywords: normal subgroup, core-free subgroup, Dedekind group. Let G be a group. The following two normal subgroups are associated with any subgroup H of the group G: HG, the normal closure of H in a the group G, the least normal subgroup of G including H, and Core ( )G H , the (normal) core of H in G, the greatest normal subgroup of G, which is contained in H. We have |G xH H x G= 〈 ∈ 〉 and Core ( ) x G x G H H ∈ = ∩ . A subgroup H is normal if and only if Core ( )G GH H H= = . In this sense, the subgroups H, for which Core ( )G H = 〈1〉 , are the complete opposite of the normal subgroups. A subgroup H of the group G is called core-free in G if Core ( )G H = 〈1〉 . There is a whole series of papers devoted to the study of groups with only two types of sub- groups: subgroups with some property ρ and subgroups with a property that is antagonistic to ρ (see, for example, [1—6]). In particular, from the results of paper [3], it is possible to obtain a description of groups that have only two possibilities for each subgroup H: GH H= or GH G= . In this connection, a dual question naturally arises on the structure of groups, in which, for each subgroup H, there are only two other possibilities: Core ( )G H H= or Core ( )G H = 〈1〉 . The finite groups having this property had been studied in [7]. Note at once that the groups, whose all sub- groups are normal, possess this property. © L.A. Kurdachenko, A.A. Pypka, I.Ya. Subbotin, 2019 18 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2019. № 4 L.A. Kurdachenko, A.A. Pypka, I.Ya. Subbotin Recall that a group G is called Dedekind, if every its subgroup is normal. The Dedekind group G has the following structure: it is either Abelian or 8G Q D P= × × , where 8Q is a quaternion group of order 8, D is an elementary Abelian 2-group, and P is an Abelian 2′-group [8]. Another extreme case that occurs here is the simple groups. In them, every proper subgroup is core-free. This fact immediately shows that the study of groups, in which Core ( )G H H= or Core ( )G H = 〈1〉 for each subgroup H, makes sense for generalized soluble groups. The two key cases here are as follows: G is a non-monolithic group or G is a monolithic group. Let G be a group. The intersection of all non-trivial normal subgroups Mon( )G of G is called the monolith of the group G. If Mon( )G ≠ 〈1〉 , then the group G is called monolithic, and, in this case, Mon( )G is the least non-trivial normal subgroup of G. Our first main result is related to the non-monolithic case. Theorem A. Let G be an infinite group, whose non-normal subgroups are core-free. If G is non- monolithic, then G is a Dedekind group. The following our main theorem considers the monolithic case. Here, we get a much more diverse situation. Separate considerations are required for non-periodic and periodic groups. Theorem B. Let G be a locally soluble non-periodic group, whose non-normal subgroups are core- free. Suppose that G is not a Dedekind group. Then G is monolithic, the factor-group /Mon( )G G is non-periodic, Mon( )G G A= , and the following conditions hold: (i) Mon( )G is either torsion-free Abelian subgroup or elementary Abelian p-subgroup for some prime p; (ii) [ , ] Mon( ) (Mon( ))GG G G C G= = ; (iii) a subgroup A is Abelian, and Tor( )A is locally cyclic; (iv) if Mon( )G is an elementary Abelian p-subgroup, then Tor( )A is a p′-subgroup; (v) if A has finite 0-rank, then Mon( )G is an elementary Abelian p-subgroup; (vi) if B is another complement to Mon( )G in G, then the subgroups A and B are conjugate. In turn, the case where G is periodic also splits into two cases depending on whether the center includes a monolith or not. Recall that a p-group G is called extraspecial, if [ , ] ( )G G G= ζ is a subgroup of order p and / ( )G Gζ is an elementary Abelian p-group. From this definition, we can see that the center of an extraspecial p-group G is the least nor- mal subgroup, so that if H is a subgroup of G, and H includes a non-trivial G-invariant subgroup, then H includes ( )Gζ . The equality [ , ] ( )G G G= ζ implies that H is normal in G. In other words, every subgroup of G is either normal or core-free. Theorem C. Let G be a periodic monolithic group, whose non-normal subgroups are core-free. Suppose that G is not a Dedekind group. If the center of G includes a monolith, then G KE= , where K is a cyclic or quasicyclic p-subgroup, E is an extraspecial p-subgroup, ( )K G= ζ , and [ , ]K E G G∩ = is a subgroup of order p, p is a prime. Theorem D. Let G be an infinite periodic locally soluble monolithic group, whose non-normal subgroups are core-free. Suppose that G is not a Dedekind group and the monolith of G is not central. Then Mon( )G G A= , and the following conditions hold: (i) Mon( )G is an infinite elementary Abelian p-subgroup for some prime p, and A is an infinite periodic p′-group; (ii) [ , ] Mon( ) (Mon( ))GG G G C G= = ; 19ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2019. № 4 On the structure of groups, whose subgroups are either normal or core-free (iii) whether the subgroup A is locally cyclic, or A Q B= × , where Q is a quaternion group of order 8, and B is a locally cyclic 2′-subgroup; (iv) if C is another complement to Mon( )G in G, then the subgroups A and C are conjugate. Note that if /Mon( )G G is finite or Mon( )G is finite and non-central, then G is finite (this follows from Theorem D). The last our result gives a description of the finite soluble group, whose non-normal subgroups are core-free. As was noted above, a finite group, whose non-normal sub- groups are core-free, was studied in [7]. Our description is more detailed than the description given in Theorem 1 of that paper. We also note that the proof of Lemma 5 in [7] contains a gap (only the case where the both factor-groups 1/G N and 2/G N are non-Abelian was considered). In addition, there is a mistake there: the fact that H is a subgroup of T A× does not implies that 1 2H H H= × , where 1H T and 2H A . Therefore, we do not use the results of work [7]. We proved of the following result. Theorem E. Let G be a finite soluble group, whose non-normal subgroups are core-free. Suppose that G is not a Dedekind group. Then G is monolithic. If the center of G includes a monolith, then G KE= where K is a cyclic p-subgroup, E is an ex- traspecial p-subgroup, ( )K G= ζ , and [ , ]K E G G∩ = is a subgroup of order p, p is a prime. If the monolith of G is not central, then Mon( )G G A= , and the following conditions hold: (i) Mon( )G is elementary Abelian p-subgroup for some prime p, and A is a p′-group; (ii) [ , ] Mon( ) (Mon( ))GG G G C G= = ; (iii) whether a subgroup A is cyclic or A Q B= × , where Q is a quaternion group of order 8, and B is a cyclic 2′-subgroup; (iv) if C is another complement to Mon( )G in G, then the subgroups A and C are conjugate. REFERENCES 1. Fattahi, A. (1974). Groups with only normal and abnormal subgroups. J. Algebra, 28, No. 1, pp. 15-19. 2. Ebert, G. & Bauman, S. (1975). A note of subnormal and abnormal chains. J. Algebra, 36, No. 2, pp. 287-293. 3. De Falco, M., Kurdachenko, L.A. & Subbotin, I.Ya. (1998). Groups with only abnormal and subnormal subgroups. Atti Sem. Mat. Fis. Univ. Modena, 46, pp. 435-442. 4. Kurdachenko, L.A. & Smith, H. (2005). Groups with all subgroups either subnormal or self-normalizing. J. Pure Appl. Algebra, 196, No. 2-3, pp. 271-278. 5. Kurdachenko, L.A., Otal, J., Russo, A. & Vincenzi, G. (2011). Groups whose all subgroups are ascendant or self-normalizing. Cent. Eur. J. Math., 9, No. 2, pp. 420-432. 6. Kurdachenko, L.A., Pypka, A.A. & Semko, N.N. (2016). The groups whose cyclic subgroups are either ascendant or almost self-normalizing. Algebra Discrete Math., 21, No. 1, pp. 111-127. 7. Zhao, L., Li, Y. & Gong, L. (2018). Finite groups in which the cores of every non-normal subgroups are trivial. Publ. Math. Debrecen, 93, No. 3-4, pp. 511-516. 8. Baer, R. (1933). Situation der Untergruppen und Struktur der Gruppe. S.-B. Heidelberg Acad. Math.-Nat. Klasse, 2, pp. 12-17. Received 02.01.2019 20 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2019. № 4 L.A. Kurdachenko, A.A. Pypka, I.Ya. Subbotin Л.А. Курдаченко 1, О.О. Пипка 1, І.Я. Субботін 2 1 Дніпровський національний університет ім. Олеся Гончара 2 Національний університет, Лос-Анджелес, США E-mail: lkurdachenko@i.ua, pypka@ua.fm, isubboti@nu.edu ПРО СТРУКТУРУ ГРУП, ПІДГРУПИ ЯКИХ АБО НОРМАЛЬНІ, АБО ВІЛЬНІ ВІД ЯДРА Досліджується вплив деяких природних типів підгруп на структуру груп. Підгрупу H групи G називаємо вільною від ядра, якщо Core ( )G H = 〈1〉 . Вивчено групи, в яких кожна підгрупа або нормальна, або вільна від ядра. Точніше, одержано будову монолітичних та немонолітичних груп з цією властивістю. Ключові слова: нормальна підгрупа, вільна від ядра підгрупа, дедекіндова група. Л.А. Курдаченко 1, А.А. Пыпка 1, И.Я. Субботин 2 1 Днепровский национальный университет им. Олеся Гончара 2 Национальный университет, Лос-Анджелес, США E-mail: lkurdachenko@i.ua, pypka@ua.fm, isubboti@nu.edu О СТРУКТУРЕ ГРУПП, ПОДГРУППЫ КОТОРЫХ ЛИБО НОРМАЛЬНЫ, ЛИБО СВОБОДНЫ ОТ ЯДРА Исследуется влияние некоторых естественных типов подгрупп на структуру групп. Подгруппу H группы G называем свободной от ядра, если Core ( )G H = 〈1〉 . Изучены группы, в которых каждая подгруппа либо нормальна, либо свободна от ядра. Точнее, получена структура монолитических и немонолитических групп с этим свойством. Ключевые слова: нормальная подгруппа, свободная от ядра подгруппа, дедекиндова группа.