Data assimilation using kalman filter techniques

Kalman filtering represents a powerful framework for solving data assimilation problems. Of interest here are the low-rank filters which are computationally efficient to solve large scale data assimilation problems. The low-rank filters are either based on factorization of the covariance matrix (R...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Dimitriu, G., Cuciureanu, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут програмних систем НАН України 2006
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/1581
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Data assimilation using kalman filter techniques / G. Dimitriu, R. Cuciureanu // Проблеми програмування. — 2006. — N 2-3. — С. 688-693. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Kalman filtering represents a powerful framework for solving data assimilation problems. Of interest here are the low-rank filters which are computationally efficient to solve large scale data assimilation problems. The low-rank filters are either based on factorization of the covariance matrix (RRSQRT filter), or approximation of statistics from a finite ensemble (ENKF). A new direction in filter implementation is the use of two filters next to each other of the same form or hybrid (POENKF). The factorization approach is based on the linear Kalman filter which can be extended towards nonlinear models. In this paper, the background, implementation and performance of some common used low-rank filters is discussed. Numerical results are presented.