Data assimilation using kalman filter techniques
Kalman filtering represents a powerful framework for solving data assimilation problems. Of interest here are the low-rank filters which are computationally efficient to solve large scale data assimilation problems. The low-rank filters are either based on factorization of the covariance matrix (R...
Saved in:
| Date: | 2006 |
|---|---|
| Main Authors: | Dimitriu, G., Cuciureanu, R. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут програмних систем НАН України
2006
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/1581 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Data assimilation using kalman filter techniques / G. Dimitriu, R. Cuciureanu // Проблеми програмування. — 2006. — N 2-3. — С. 688-693. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Photochemical reactions in the atmosphere – a source of secondary pollutants
by: Cuciureanu, R., et al.
Published: (2006) -
Problem of data analysis and forecasting using decision trees method
by: Lytvynenko, T.I.
Published: (2016) -
Neural and statistical techniques for remote sensing image classification
by: Grypych, Iu., et al.
Published: (2010) -
Особенности реализации процессов имитационного моделирования на основе методологи Data Farming
by: Криковлюк, Е.А., et al.
Published: (2012) -
On the maximum-minimum principle for advection-diffusion equations
by: Horváth, R.
Published: (2006)