Asymptotic analysis on steady-state response of axially accelerating beam constituted by the standard linear solid model

The transverse bending vibrations of an axially accelerating viscoelastic beam are studied. A material of beam is constituted by the standard viscoelastic model. The method of multiple scales is applied to determine the steady-state response of beam. The numerical examples illustrate the asymptotic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Прикладная механика
Datum:2017
Hauptverfasser: Wang, B., Qiu, J.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут механіки ім. С.П. Тимошенка НАН України 2017
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/158784
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Asymptotic analysis on steady-state response of axially accelerating beam constituted by the standard linear solid model / B. Wang, J. Qiu // Прикладная механика. — 2017. — Т. 53, № 4. — С. 138-144. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-158784
record_format dspace
spelling Wang, B.
Qiu, J.
2019-09-12T18:36:04Z
2019-09-12T18:36:04Z
2017
Asymptotic analysis on steady-state response of axially accelerating beam constituted by the standard linear solid model / B. Wang, J. Qiu // Прикладная механика. — 2017. — Т. 53, № 4. — С. 138-144. — Бібліогр.: 18 назв. — англ.
0032-8243
https://nasplib.isofts.kiev.ua/handle/123456789/158784
The transverse bending vibrations of an axially accelerating viscoelastic beam are studied. A material of beam is constituted by the standard viscoelastic model. The method of multiple scales is applied to determine the steady-state response of beam. The numerical examples illustrate the asymptotic solution.
Вивчено поперечні згинні коливання в'язкопружної балки, яка допускає рухи вздовж осі. Матеріал балки припускається деформівним за стандартною триконстантною моделлю теорії в'язкопружності. Для визначення стаціонарної реакції балки застосовано метод багатьох масштабів. Числові приклади ілюструють асимптотичний розв'язок.
en
Інститут механіки ім. С.П. Тимошенка НАН України
Прикладная механика
Asymptotic analysis on steady-state response of axially accelerating beam constituted by the standard linear solid model
Асимптотический анализ стационарной реакции балки с ускорением вдоль оси и с использованием стандартной линейной модели деформируемого тела
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Asymptotic analysis on steady-state response of axially accelerating beam constituted by the standard linear solid model
spellingShingle Asymptotic analysis on steady-state response of axially accelerating beam constituted by the standard linear solid model
Wang, B.
Qiu, J.
title_short Asymptotic analysis on steady-state response of axially accelerating beam constituted by the standard linear solid model
title_full Asymptotic analysis on steady-state response of axially accelerating beam constituted by the standard linear solid model
title_fullStr Asymptotic analysis on steady-state response of axially accelerating beam constituted by the standard linear solid model
title_full_unstemmed Asymptotic analysis on steady-state response of axially accelerating beam constituted by the standard linear solid model
title_sort asymptotic analysis on steady-state response of axially accelerating beam constituted by the standard linear solid model
author Wang, B.
Qiu, J.
author_facet Wang, B.
Qiu, J.
publishDate 2017
language English
container_title Прикладная механика
publisher Інститут механіки ім. С.П. Тимошенка НАН України
format Article
title_alt Асимптотический анализ стационарной реакции балки с ускорением вдоль оси и с использованием стандартной линейной модели деформируемого тела
description The transverse bending vibrations of an axially accelerating viscoelastic beam are studied. A material of beam is constituted by the standard viscoelastic model. The method of multiple scales is applied to determine the steady-state response of beam. The numerical examples illustrate the asymptotic solution. Вивчено поперечні згинні коливання в'язкопружної балки, яка допускає рухи вздовж осі. Матеріал балки припускається деформівним за стандартною триконстантною моделлю теорії в'язкопружності. Для визначення стаціонарної реакції балки застосовано метод багатьох масштабів. Числові приклади ілюструють асимптотичний розв'язок.
issn 0032-8243
url https://nasplib.isofts.kiev.ua/handle/123456789/158784
citation_txt Asymptotic analysis on steady-state response of axially accelerating beam constituted by the standard linear solid model / B. Wang, J. Qiu // Прикладная механика. — 2017. — Т. 53, № 4. — С. 138-144. — Бібліогр.: 18 назв. — англ.
work_keys_str_mv AT wangb asymptoticanalysisonsteadystateresponseofaxiallyacceleratingbeamconstitutedbythestandardlinearsolidmodel
AT qiuj asymptoticanalysisonsteadystateresponseofaxiallyacceleratingbeamconstitutedbythestandardlinearsolidmodel
AT wangb asimptotičeskiianalizstacionarnoireakciibalkisuskoreniemvdolʹosiisispolʹzovaniemstandartnoilineinoimodelideformiruemogotela
AT qiuj asimptotičeskiianalizstacionarnoireakciibalkisuskoreniemvdolʹosiisispolʹzovaniemstandartnoilineinoimodelideformiruemogotela
first_indexed 2025-11-25T20:40:52Z
last_indexed 2025-11-25T20:40:52Z
_version_ 1850526782828052480
fulltext 2017 ПРИКЛАДНАЯ МЕХАНИКА Том 53, № 4 138 ISSN0032–8243. Прикл. механика, 2017, 53, № 4 B . W a n g 1 , J . Q i u ASYMPTOTIC ANALYSIS ON STEADY-STATE RESPONSE OF AXIALLY ACCELERATING BEAM CONSTITUTED BY THE STANDARD LINEAR SOLID MODEL 1School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 200235 ;wang@live.com Abstract: The transverse bending vibrations of an axially accelerating viscoelastic beam are studied. A material of beam is constituted by the standard viscoelastic model. The method of multiple scales is applied to determine the steady-state response of beam. The numerical examples illustrate the asymptotic solution. Key words: viscoelastic beam, axial acceleration, standard viscoelastic model, steady- state response of beam. 1, Introduction. Due to their technological importance, the vibrations of axially moving beams have been investigated by many researchers. Transverse parametric vibration of axially accelerat- ing elastic beams has been extensively analyzed since first study by Pasin [1]. Wickert and Mote reviewed the literature on axially moving materials [2]. Öz and Pakdemirli [3] em- ployed the method of multiple scales to study dynamic stability of an axially accelerating beam with small bending stiffness. In addition to elastic beams, axially accelerating viscoelastic beams have recently been investigated. Chen and Yang [4] applied the method of multiple scales to obtain analytically the stability boundaries. Yang and Chen [5] presents vibration and stability of an axially moving beam constituted by the viscoelastic constitutive law of an integral type. Chen and Yang [6] presents analytically vibration and stability of an axially moving beam constrained by simple supports with rotational springs. Chen and Wang [7] presented the comparison between the analytical and the numerical results parametric resonances via the differential quadrature method. In Ref. [4 – 7], the Kelvin model containing the partial time derivative was used to describe the viscoelastic behavior of beam materials. As parametric vibration excited by the variation of the axial tension or axial velocity, large transverse motion of axially moving beams may occur under certain conditions. Geometrical nonlinearity produced due to axially stretching of beam, can’t be neglected when large transverse displacement takes place. Chen and Yang investigated the steady-state response and their stability of two nonlinear models of axially moving viscoelastic beams [8]. Chen and Ding investigates steady-state periodical response for planar vibration of axially moving viscoelastic beams with two nonlinear models subjected external transverse loads [9]. Compared with Kelvin model, standard linear solid model is more typical and representative, mean while this model can degenerate to the Kevin or Maxwell model by varying alternative of the stiffness of beam. Wang and Chen investigated the linear stability of axially accelerating beams via asymptotic analysis [10]. In present investigation, the standard linear solid model viscoelastic material is developed for two nonlinear models of axially accelerating viscoelastic beams. The method of multiple scales 139 is applied to solution of governing equation and steady-state response of nonlinear axially moving beams. 2. Equation of motion. A uniform axially moving viscoelastic beam, with density ρ, cross-sectional area A, and initial tension P, travels at time-dependent axial velocity γ(t) between two transversely mo- tionless ends separated by distance l. Consider only the bending vibration of beam in a ref- erence frame described by the transverse displacement v(x, t), where t is the time and x is the axial coordinate. The equation of motion in the transverse direction can be derived from Newton’ second law as   2 2 , ,xx x d v A M P A v xdt        , (1) where (·),x denotes partial differentiation with respect to x. σ(x, t) is the disturbing stress, and the bending moment M(x, t) is defined by    , , , A M x t z x z t dA  , (2) where the z-x plane is regarded as the principal plane of bending, and σ (x, z, t) is the normal stress. The standard linear solid model is adopted to describe the viscoelastic property of the material of beam. The stress-strain relationship of the model is expressed in a differential form as [11 – 14]          1 2 1 2 1, , , , , , , , , d d E E x z t x z t E E x z t E x z t dt dt          (3) where both E1 and E2 are stiffness constants, ε(x, z, t) is the axial strain, and η is viscous damping. The standard linear solid model can be employed to describe the behavior of linear viscoelastic materials of solid type with limited creep deformation. It can reduce to Kelvin model (E1→∞ and E2≠0) or Maxwell model (E1 ≠ 0 and E2 = 0). For small deflections, the strain-displacement relation is    2 2 , , , v x t x z t z x      . (4) Lagrangian strain is employed as a finite measure to account for geometric nonlinearity due to small but finite stretching of beam. For one-dimensional problems, the disturbing stress σ (x, t) in equation (1) is still described by the standard linear solid model          1 2 1 2 1, , , ,L L d d E E x t x t E E x t E x t dt dt          , (5) where εL(x, t) is the Lagrangian strain, 21 , 2L xv  . (6) Introduce the material time derivative by defining differential operator d / dt as d dt t x       . (7) Inserting Eq. (7) in (1), (3) and (5) yields    2, , 2 , , , , ,tt x xt xx xx x xA v v v v M P A v            ; (8)      1 2 1 2, , , ,t x t xE E E E               ; (9) 140      1 2 1 2 L L L, , , ,t x t xE E E E               . (10) Eqs. (8) – (10) are the governing equation of an axially moving viscoelastic beam. If the spatial variation of the tension is rather small compared with the initial tension, the exact form of the disturbing tension Aσ can be replaced by its spatially averaged value 0 1 d l A x l  [15, 16]. Then Eq. (8) leads to  2 0 1 , , 2 , , , d , l tt x xt xx xx xxA v v v v M P A x v l                  . (11) Let the dimensionless variables be: 2 ; ; ; ; v x P A v x t t c l PAll               2A 1 2 1 , , , d ; , ; ; A P x t z x z t A x t Pl P E E Al            (12)     1 2 1 1 2 1 2 2 1 21 2 ; ; ; ,a b c d IE E IE E E A E A E E E E P E E PPl E E Pl      where I is the moment of inertial, book keeping device  is a small dimensionless parameter accounting for the fact that the transverse displacement and the viscous damping is very small. Eqs. (8) – (10) can be respectively cast into the dimensionless form of governing equation    2, , 2 , 1 , , , ,tt x xt xx xx x xv cv cv c v v        ; (13)  , , , , ,t x a xx b xxt xxxc E v E v cv          ; (14)    2 2 21 1 , , , , , , , 2 2t x c x d x t x xc E v E v c v            . (15) We suppose that the beam is constrained at both ends by simple supports with rotational springs whose stiffness constants are k respectively, the boundary conditions are expressed in dimensionless form as follows then:            0, 0; , 0, , 0, 0; 1, 0; , 1, , 1, 0.xx x xx xv t v t kv t v t v t kv t      (16) In the present investigation, the axial velocity is assumed to be a small simple harmonic variation about the constant mean speed   0 1 sinc t c c t   , (17) where c0 is the constant mean speed, and c1 and  are respectively the disturbed amplitude and the excitation frequency, all in the dimensionless form. Here the bookkeeping device  is used to indicate the fact that disturbed amplitude is small, with the same order as the di- mensionless viscosity. Substitution of Eqs. (14), (15) and (17) in Eq. (13) and neglect of higher order  terms in the resulting equation yield the following nonlinear partial-differential equation  2 1 1 0 3 , , , , , cos 2 sin , , 2tt t c x xx x xt xxMv Gv Kv E v v c v t c t v c v           141      2 0, , ,b a xxxxt xxxxxE E v c v O     (18) where the mass, gyroscopic, and linear stiffness operators are, respectively, defined as follows:   2 4 2 0 0 2 4 ; 2 ; 1 .aM I G c K c E x x x            (19) Resting on Eq. (11), the nonlinear integro-partial-differential equation below can be cast into by means of the previous similar procedures.        1 2 1 1 0 0 2 0 1 , , , , d , cos 2 sin , , 2 , , . tt t c xx x x xt xx b a xxxxt xxxxx Mv Gv Kv E v v x c v t c t v c v E E v c v O                    (20) 3. Multi-scale procedure with numerical examples. Both equations (18) and (20) are regarded as gyroscopic continuous system with weakly nonlinear and parametric disturbances. Using the method of multiple scales, defining a slow time scale T = ε t, and looking for an asymptotic solution of the form        2 0 1, ; , , , ,v x t v x t T v x t T O     . (21) Substitution of Eq. (21) in Eq. (18), equating coefficients of each power of ε to zero, we obtain 0 0 0, , 0tt tMv Gv Kv   ; (22)        1 1 1 1 0 0 0 0 1 0 0 0 2 0 0 0 0 0 , , cos , 2 , 2 , 2 sin , , 3 , , , , . 2 tt t x tT xT xt xx c x xx a b xxxxt xxxxx Mv Gv Kv tv v v t v v E v v E E v v                       (23) We assume that the system is in summation parametric resonance and in order to ex- press the nearness of the excitation frequency to sum of arbitrary two natural frequencies, and define a detuning parameter μ through the relation n m      , (24) where ωm and ωn are respectively the mth and nth natural frequencies of the undisturbed gyroscopic continuous system (22) under boundary condition (16). Wickert and Mote [2] have obtained the solution to Eq. (22)          i i 0 , , e em nt t m m n nv x t T x A T x A T cc     , (25) where cc stands for the complex conjugate of all preceding terms on the right hand of an equation. The expressions of modal functions m(x) and n(x) had given in Ref. [3]. Substituting Eqs. (24) and (25) into Eq. (23), we obtain    1 1 1 0 1 0 1 1 , , 2 2 iT iT tt t m m m m n n n m n nMv Gv Kv i A e A ie A                           22 23 2 3 2 c m m m m m m m c m n n n m m n n m n nE A A E A A                                        4 5 0 0 0 12mi t iT m a b m m m n n n n m mA E E i e i A i A e                        (26)    22 23 2 3 2 c n n n n n n n c n m n m m m m n m n mE A A E A A                                142         4 5 1 0 1 , 2 ni tiT m m m n n a b n n ne A A E E i e                where the dot and the prime denote differentiation with respect to T and x respectively, and NST stands for the terms that will not bring secular terms into the solution. Eq. (26) has a bounded solution only if a solvability condition holds. The solvability condition demands the following orthogonal relationships [17,18]                    2 2 0 1 0 2 4 5 0 0 1 0 1 3 2 2 2 2 2 3 , 0; 1 3 2 2 2 2 iT m m m m n n n m n c m m m m m m m c m n n n m m n n m n n m a b m m m m iT n n n n m m m n m c A i A e i E A A E A A A E E i A i A e i E                                                                                                  2 2 2 4 5 0 2 3 , 0. n n n n n n n c n m n m m m m n m n m n a b n n n n A A E A A A E E i                                          (2 7) Substituting the polar form ;m ni i m m n nA a e A a e   (28) into Eq. (27), where ak (T) and βk(T) (k = m, n) are respectively the amplitude and phase of the steady-state response in the summation parametric resonance. By the means of separat- ing real and imaginary parts of the resulting equations, we arrive at the relationship between ak(T) and μ to determine steady-state response of nonlinear system. Specify system parameters of an axially moving beam with Ea=0,64, c0=2,0 and k = 2 under boundary condition (16). The first two natural frequencies of undisturbed system (22) are ω1=8,1570 and ω2=32,9441. Fig. 1 depicts the relationship between the amplitude and the detuning parameter in the summation parametric resonance, in which the solid and dashed lines stand for stable and unstable amplitudes, respectively. In the figures, c1=0,2, Ec=400, α=0,0001 and E1 =E2=3. Eq. (12) gives Eb = Ea (E1 +E2) / E2 = 1,28. (a) (b) Fig. 1. The amplitude and the detuning parameter relationship in the summation resonance: (a) the first order and (b) the second order. In the summation resonance, only the trivial solution exists and is stable for μ<μ1. At μ=μ1 the trivial solution losses its stability and a stable nontrivial solution occurs. At μ=μ2 the unstable trivial solution becomes stable again, and an unstable nontrivial solution bifurcates. μ1 μ2 μ1 μ2 143 The instability interval in the first order is larger than in the second, which indicates that effect of the low order is more significant. (a) (b) Fig. 2. The effect of the axial velocity variation amplitude in the summation resonance: (a) the first order and (b) the second order. Fig. 2 illustrates the effect of the axial velocity variation amplitude in the summation resonance, and the increasing velocity variation amplitude leads to the larger instability in- terval. Fig. 3 show the comparison of the two nonlinear models, and the nontrivial solution amplitude of partial-differential equation model is smaller, but both of them possess the same instability intervals and changing trend with related parameters. (a) (b) Fig. 3. Comparison of two nonlinear models in the summation resonance: (a) the first order and (b) the second order. 4. Conclusions. With conclusions: (1) There exists an instability interval of the detuning on which straight equilibrium is unstable, and the instability interval of lower order resonance is more than the higher order one. The first nontrivial solution is always stable but the second one. (2) Increasing velocity variation amplitude lead to the larger instability interval. (3) By the means of the comparison of the two nonlinear models, both of them have the same tenden- cies and instability intervals with changing relevant parameters. Besides partial-differential equation model has smaller amplitude of nontrivial steady-state response. Р Е ЗЮМ Е . Вивчено поперечні згинні коливання в’язкопружної балки яка допускає рухи вздовж осі. Матеріал балки припускається деформівним за стандартною триконстантною моделлю теорії в’язкопружності. Для визначення стаціонарної реакції балки застосовано метод багатьох масш- табів. Числові приклади ілюструють асимптотичний розв‘язок. 1. Pasin F. Ueber die Stabilität der Beigeschwingungen von in Laengsrichtung periodisch hin und herbe- wegten Stäben // Ingenieur-Archiv. – 1972. – 41, N 6. – P. 387 – 393. 144 2. Wickert J. A., Mote C.D.Jr. Current Research on the Vibration and Stability of Axially Moving Materials // Shock and Vibration Digest. – 1988. – 20, N 2. – P. 3 –13. 3. Öz H.R., Pakdemirli M. Vibrations of an axially moving beam with time dependent velocity // J. Sound and Vibration. – 1999. – 227, N 2. – P. 239 –257. 4. Chen L.Q., Yang X.D. Stability in parametric resonances of an axially moving viscoelastic beam with time-dependent velocity // J. Sound and Vibration. – 2005. – 284, N 3 – 5. – P.879 – 891. 5. Yang X.D., Chen L.Q. Stability in parametric resonance of axially accelerating beams constituted by Boltzmann’s superposition principle // J. Sound and Vibration. – 2006. – 289, N1 – 2. – P. 54 – 65. 6. Chen L.Q., Yang X.D. Vibration and stability of an axially moving viscoelastic beam with hybrid sup- ports // Eur. J. Mech. A/Solid. – 2006. – 25, N 6. – P. 996 – 1008. 7. Chen L.Q., Wang B. Stability of axially accelerating viscoelastic beams: asymptotic perturbation analysis and differential quadrature validation // Eur. J. Mech. A/Solid. – 2009. – 28, N 4. – P. 786 – 791. 8. Chen L.Q., Yang X.D. Steady-state response of axially moving viscoelastic beams with pulsating speed: comparison of two nonlinear models // Int. J. Solids Struct. – 2005. – 42, N 1. – P. 37 – 50. 9. Chen L.Q., Ding H. Steady-State Transverse Response in Coupled Planar Vibration of Axially Mov- ing Viscoelastic Beams // J. Vib. Acoust. – 2010. – 132, N 1. – P. 256 – 280. 10. Wang B., Chen L.Q. Asymptotic stability analysis with numerical confirmation of an axially accelerating beam constituted by the standard linear solid model // J. Sound and Vibration. – 2009. – 328, N 2. – P. 456 – 466. 11. Hou Z., Zu J.W. Non-linear free oscillations of moving viscoelastic belts // Mech. Mach. Theory. – 2002. – 37, N 9. – P. 925 – 940. 12. Fung R.F., Huang J.S., Chen Y.C., Yao C.M. Nonlinear dynamic analysis of the viscoelastic string with a harmonically varying transport speed // Comput . Struct. – 1998. – 66, N 6. – P. 777 – 784. 13. Ha J.L., Chang J.R. Fung R.F. Nonlinear dynamic behavior of a moving viscoelastic string undergoing three-dimensional vibration // Chaos, Solitons and Fractals. – 2007. – 33, N 4. – P. 1117 – 1134. 14. Chen L.Q., Chen H. Asymptotic analysis on nonlinear vibration of axially accelerating viscoelastic strings with the standard linear solid model // J. Eng. Math. – 2010. – 67, N 3. – P. 205 – 218. 15. Chen L.Q., Ding H. Steady-state responses of axially accelerating viscoelastic beams: approximate analysis and numerical confirmation // Sci. China Ser. G-Phys Mech. Astron. – 2008. – 51, N 11. – P. 1707 – 1721. 16. Ding H., Chen L.Q. On two transverse nonlinear models of axially moving beams // Sci. China Ser. E-Tech Sci. – 2009. – 52, N 3. – P. 743 – 751. 17. Chen L.Q., Lim C.W., Hu Q.Q., Ding H. Asymptotic analysis of a vibrating cantilever with a nonlinear boundary // J. Appl. Mech. – 2009. – 52, N 9. – P. 1414 – 1422. 18. Chen L.Q., Zu J.W. Solvability condition in multi-scale analysis of gyroscopic continua // J. Sound and Vibration. – 2008. – 309, N1 – 2. – P. 338 – 342. ___________________ From the Editorial Board: The article correspond to submitted manuscript. Поступила 24.12.2015 Утверждена в печать 14.03.2017