Implementing of Microsoft Azure machine learning technology for electric machines optimization

Purpose. To consider problems of electric machines optimization within a wide range of many variables variation as well as the presence of many calculation constraints in a single-criteria optimization search tasks. Results. A structural model for optimizing electric machines of arbitrary type using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Електротехніка і електромеханіка
Datum:2019
Hauptverfasser: Pliuhin, V., Sukhonos, M., Pan, M., Petrenko, O., Petrenko, M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут технічних проблем магнетизму НАН України 2019
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/159032
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Implementing of Microsoft Azure machine learning technology for electric machines optimization / V. Pliuhin, M. Sukhonos, M. Pan, O. Petrenko, M. Petrenko // Електротехніка і електромеханіка. — 2019. — № 1. — С. 23-28. — Бібліогр.: 20 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-159032
record_format dspace
spelling Pliuhin, V.
Sukhonos, M.
Pan, M.
Petrenko, O.
Petrenko, M.
2019-09-20T19:31:38Z
2019-09-20T19:31:38Z
2019
Implementing of Microsoft Azure machine learning technology for electric machines optimization / V. Pliuhin, M. Sukhonos, M. Pan, O. Petrenko, M. Petrenko // Електротехніка і електромеханіка. — 2019. — № 1. — С. 23-28. — Бібліогр.: 20 назв. — англ.
2074-272X
DOI: https://doi.org/10.20998/2074-272X.2019.1.04
https://nasplib.isofts.kiev.ua/handle/123456789/159032
629.429.3:621.313
Purpose. To consider problems of electric machines optimization within a wide range of many variables variation as well as the presence of many calculation constraints in a single-criteria optimization search tasks. Results. A structural model for optimizing electric machines of arbitrary type using Microsoft Azure machine learning technology has been developed. The obtained results, using several optimization methods from the Microsoft Azure database are demonstrated. The advantages of cloud computing and optimization based on remote servers are shown. The results of statistical analysis of the results are given. Originality. Microsoft Azure machine learning technology was used for electrical machines optimization for the first time. Recommendations for modifying standard algorithms, offered by Microsoft Azure are given. Practical value. Significant time reduction and resources spent on the optimization of electrical machines in a wide range of variable variables. Reducing the time to develop optimization algorithms. The possibility of automatic statistical analysis of the results after performing optimization calculations.
en
Інститут технічних проблем магнетизму НАН України
Електротехніка і електромеханіка
Електричні машини та апарати
Implementing of Microsoft Azure machine learning technology for electric machines optimization
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Implementing of Microsoft Azure machine learning technology for electric machines optimization
spellingShingle Implementing of Microsoft Azure machine learning technology for electric machines optimization
Pliuhin, V.
Sukhonos, M.
Pan, M.
Petrenko, O.
Petrenko, M.
Електричні машини та апарати
title_short Implementing of Microsoft Azure machine learning technology for electric machines optimization
title_full Implementing of Microsoft Azure machine learning technology for electric machines optimization
title_fullStr Implementing of Microsoft Azure machine learning technology for electric machines optimization
title_full_unstemmed Implementing of Microsoft Azure machine learning technology for electric machines optimization
title_sort implementing of microsoft azure machine learning technology for electric machines optimization
author Pliuhin, V.
Sukhonos, M.
Pan, M.
Petrenko, O.
Petrenko, M.
author_facet Pliuhin, V.
Sukhonos, M.
Pan, M.
Petrenko, O.
Petrenko, M.
topic Електричні машини та апарати
topic_facet Електричні машини та апарати
publishDate 2019
language English
container_title Електротехніка і електромеханіка
publisher Інститут технічних проблем магнетизму НАН України
format Article
description Purpose. To consider problems of electric machines optimization within a wide range of many variables variation as well as the presence of many calculation constraints in a single-criteria optimization search tasks. Results. A structural model for optimizing electric machines of arbitrary type using Microsoft Azure machine learning technology has been developed. The obtained results, using several optimization methods from the Microsoft Azure database are demonstrated. The advantages of cloud computing and optimization based on remote servers are shown. The results of statistical analysis of the results are given. Originality. Microsoft Azure machine learning technology was used for electrical machines optimization for the first time. Recommendations for modifying standard algorithms, offered by Microsoft Azure are given. Practical value. Significant time reduction and resources spent on the optimization of electrical machines in a wide range of variable variables. Reducing the time to develop optimization algorithms. The possibility of automatic statistical analysis of the results after performing optimization calculations.
issn 2074-272X
url https://nasplib.isofts.kiev.ua/handle/123456789/159032
citation_txt Implementing of Microsoft Azure machine learning technology for electric machines optimization / V. Pliuhin, M. Sukhonos, M. Pan, O. Petrenko, M. Petrenko // Електротехніка і електромеханіка. — 2019. — № 1. — С. 23-28. — Бібліогр.: 20 назв. — англ.
work_keys_str_mv AT pliuhinv implementingofmicrosoftazuremachinelearningtechnologyforelectricmachinesoptimization
AT sukhonosm implementingofmicrosoftazuremachinelearningtechnologyforelectricmachinesoptimization
AT panm implementingofmicrosoftazuremachinelearningtechnologyforelectricmachinesoptimization
AT petrenkoo implementingofmicrosoftazuremachinelearningtechnologyforelectricmachinesoptimization
AT petrenkom implementingofmicrosoftazuremachinelearningtechnologyforelectricmachinesoptimization
first_indexed 2025-12-07T17:52:36Z
last_indexed 2025-12-07T17:52:36Z
_version_ 1850872909557399552