Wetting and interfacial behavior of Fe-based self-fluxing alloy-refractory compound systems
In this study the wettability and interfacial behaviour of the TiC–FeNiCrBSiC and TiB₂–FeNiCrBSiC systems were investigated. The wetting experiments were performed by the sessile drop method at 1150 °C under a vacuum. The contact angles of TiC and TiB₂ wetting by melted Fe-based self-fluxing alloy w...
Saved in:
| Date: | 2017 |
|---|---|
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України
2017
|
| Series: | Сверхтвердые материалы |
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/160105 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Wetting and interfacial behavior of Fe-based self-fluxing alloy-refractory compound systems / O.P. Umanskyi, M.V. Pareiko, M.S. Storozhenko, V.P. Krasovskyy // Сверхтвердые материалы. — 2017. — № 2. — С. 35-42. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-160105 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1601052025-02-23T20:16:08Z Wetting and interfacial behavior of Fe-based self-fluxing alloy-refractory compound systems Umanskyi, O.P. Umanskyi, O.P. Storozhenko, M.S. Krasovskyy, V.P. Получение, структура, свойства In this study the wettability and interfacial behaviour of the TiC–FeNiCrBSiC and TiB₂–FeNiCrBSiC systems were investigated. The wetting experiments were performed by the sessile drop method at 1150 °C under a vacuum. The contact angles of TiC and TiB₂ wetting by melted Fe-based self-fluxing alloy were 51° and 36°, respectively. Thermodynamic calculations were carried out to understand the metal-ceramic interaction mechanism in the TiC–FeNiCrBSiC and TiB₂–FeNiCrBSiC systems. The structure of the interface region in the TiB₂–FeNiCrBSiC system was characterized by the optical microscopy and SEM-EDS analysis. The formation of Fe, Ni, Cr and Mo complex borides was revealed within the interface region of the TiB₂–FeNiCrBSiC system. Досліджено змочування та контактну взаємодію в системах TiC–FeNiCrBSiC і TiB₂–FeNiCrBSiC. Кінетику змочування вивчено методом “лежачої краплі” в вакуумі при температурі 1150 °C. Кути змочування TiC і TiB₂ самофлюсівним сплавом на основі заліза становили 51° і 36° відповідно. Для виявлення особливостей контактної взаємодії на межі металевий сплав–кераміка проведено термодинамічні розрахунки систем TiC–FeNiCrBSiC і TiB₂–FeNiCrBSiC. Методами оптичної та скануючої електронної мікроскопії вивчено структуру зони взаємодії в системі TiB₂–FeNiCrBSiC. Виявлено формування складних боридів Fe, Ni, Cr і Mo в зоні взаємодії системи TiB₂–FeNiCrBSiC. Исследовали смачивание и контактное взаимодействие в системах TiC–FeNiCrBSiC и TiB₂–FeNiCrBSiC. Кинетику смачивания изучали методом “лежащей капли” в вакууме при температуре 1150 °C. Углы смачивания TiC и TiB₂ самофлюсующимся сплавом на основе никеля составляли 51° и 36° соответственно. Для выявления особенностей контактного взаимодействия на границе металлический сплав–керамика были проведены термодинамические расчеты систем TiC–FeNiCrBSiC и TiB₂–FeNiCrBSiC. Методами оптической и электронной микроскопии изучали структуру зоны взаимодействия в системе TiB₂–FeNiCrBSiC. Установлено формирование сложных боридов Fe, Ni, Cr и Mo в зоне взаимодействия системы TiB₂–FeNiCrBSiC. 2017 Article Wetting and interfacial behavior of Fe-based self-fluxing alloy-refractory compound systems / O.P. Umanskyi, M.V. Pareiko, M.S. Storozhenko, V.P. Krasovskyy // Сверхтвердые материалы. — 2017. — № 2. — С. 35-42. — Бібліогр.: 8 назв. — англ. 0203-3119 https://nasplib.isofts.kiev.ua/handle/123456789/160105 532.64.669 en Сверхтвердые материалы application/pdf Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Получение, структура, свойства Получение, структура, свойства |
| spellingShingle |
Получение, структура, свойства Получение, структура, свойства Umanskyi, O.P. Umanskyi, O.P. Storozhenko, M.S. Krasovskyy, V.P. Wetting and interfacial behavior of Fe-based self-fluxing alloy-refractory compound systems Сверхтвердые материалы |
| description |
In this study the wettability and interfacial behaviour of the TiC–FeNiCrBSiC and TiB₂–FeNiCrBSiC systems were investigated. The wetting experiments were performed by the sessile drop method at 1150 °C under a vacuum. The contact angles of TiC and TiB₂ wetting by melted Fe-based self-fluxing alloy were 51° and 36°, respectively. Thermodynamic calculations were carried out to understand the metal-ceramic interaction mechanism in the TiC–FeNiCrBSiC and TiB₂–FeNiCrBSiC systems. The structure of the interface region in the TiB₂–FeNiCrBSiC system was characterized by the optical microscopy and SEM-EDS analysis. The formation of Fe, Ni, Cr and Mo complex borides was revealed within the interface region of the TiB₂–FeNiCrBSiC system. |
| format |
Article |
| author |
Umanskyi, O.P. Umanskyi, O.P. Storozhenko, M.S. Krasovskyy, V.P. |
| author_facet |
Umanskyi, O.P. Umanskyi, O.P. Storozhenko, M.S. Krasovskyy, V.P. |
| author_sort |
Umanskyi, O.P. |
| title |
Wetting and interfacial behavior of Fe-based self-fluxing alloy-refractory compound systems |
| title_short |
Wetting and interfacial behavior of Fe-based self-fluxing alloy-refractory compound systems |
| title_full |
Wetting and interfacial behavior of Fe-based self-fluxing alloy-refractory compound systems |
| title_fullStr |
Wetting and interfacial behavior of Fe-based self-fluxing alloy-refractory compound systems |
| title_full_unstemmed |
Wetting and interfacial behavior of Fe-based self-fluxing alloy-refractory compound systems |
| title_sort |
wetting and interfacial behavior of fe-based self-fluxing alloy-refractory compound systems |
| publisher |
Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України |
| publishDate |
2017 |
| topic_facet |
Получение, структура, свойства |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/160105 |
| citation_txt |
Wetting and interfacial behavior of Fe-based self-fluxing alloy-refractory compound systems / O.P. Umanskyi, M.V. Pareiko, M.S. Storozhenko, V.P. Krasovskyy // Сверхтвердые материалы. — 2017. — № 2. — С. 35-42. — Бібліогр.: 8 назв. — англ. |
| series |
Сверхтвердые материалы |
| work_keys_str_mv |
AT umanskyiop wettingandinterfacialbehavioroffebasedselffluxingalloyrefractorycompoundsystems AT umanskyiop wettingandinterfacialbehavioroffebasedselffluxingalloyrefractorycompoundsystems AT storozhenkoms wettingandinterfacialbehavioroffebasedselffluxingalloyrefractorycompoundsystems AT krasovskyyvp wettingandinterfacialbehavioroffebasedselffluxingalloyrefractorycompoundsystems |
| first_indexed |
2025-11-25T01:57:20Z |
| last_indexed |
2025-11-25T01:57:20Z |
| _version_ |
1849725645042483200 |
| fulltext |
ISSN 0203-3119. Сверхтвердые материалы, 2017, № 2 35
UDC 532.64.669
O. P. Umanskyi, M. V. Pareiko, M. S. Storozhenko*,
V. P. Krasovskyy
Frantsevich Institute for Problems of Materials Science
of National Academy of Sciences of Ukraine, Kiev, Ukraine
*storozhenkomary@ukr.net
Wetting and interfacial behavior of Fe-based
self-fluxing alloy-refractory compound systems
In this study the wettability and interfacial behaviour of the TiC–
FeNiCrBSiC and TiB2–FeNiCrBSiC systems were investigated. The wetting
experiments were performed by the sessile drop method at 1150 °C under a vacuum.
The contact angles of TiC and TiB2 wetting by melted Fe-based self-fluxing alloy were
51° and 36°, respectively. Thermodynamic calculations were carried out to understand
the metal-ceramic interaction mechanism in the TiC–FeNiCrBSiC and TiB2–
FeNiCrBSiC systems. The structure of the interface region in the TiB2–FeNiCrBSiC
system was characterized by the optical microscopy and SEM-EDS analysis. The
formation of Fe, Ni, Cr and Mo complex borides was revealed within the interface
region of the TiB2–FeNiCrBSiC system.
Keywords: self-fluxing alloy, refractory compound, contact angle,
titanium diboride, titanium carbide.
INTRODUCTION
Modern high-performance machinery and mechanisms operate at
high speeds, loads, and temperatures. In order to provide the reliable operation of
engineering components the protective coatings should be applied to prevent the
intensive wear and corrosion of functional surfaces Ni- or Fe-based self-fluxing
alloys (NiCrBSiC or FeNiCrBSiC) are widely used in the surface engineering to
provide wear resistance of various components, whose surfaces are subjected to
severe tribological conditions. These alloys usually contain some amount of
alloying elements such as boron, silicon, chromium and carbon. B and Si are added
into alloy to form with nickel or iron eutectic with low melting point (950–
1080 °C) and provide self-fluxing ability of material. The hardness and wear
resistance of self-fluxing coatings is achieved by the formation of hard phases such
as nickel and chromium borides, chromium carbides [1].
However, the wear resistance of NiCrBSiC or FeNiCrBSiC coatings can be
significantly improved by adding refractory carbides and borides. Several attempts
have been made to enhance tribological properties of self-fluxing alloys by
introducing the TiC, CrB2, TiB2 reinforcements [2]. In our previous work the
NiCrBSiC–TiB2 thermal-sprayed coatings were investigated [3–5]. It was shown
that the addition of titanium diboride particles into a nickel-based self-fluxing alloy
leads to a significant improvement of the wear resistance of the plasma-sprayed
coatings.
Fe-based self-fluxing alloys are promising candidates for matrices of composite
materials for coatings spraying. The wetting behavior of molten alloys in contact
© O. P. UMANSKYI, M. V. PAREIKO, M. S. STOROZHENKO, V. P. KRASOVSKYY, 2017
www.ism.kiev.ua/stm 36
with ceramic substrates is of key importance in the fabrication of metal-ceramic
composites.
To choose the reinforcing additives for FeNiCrBSiC-based composite materials
the wetting and interfacial reactions of TiB2 and TiC with Fe-based self-fluxing
alloy have been investigated in the present study.
MATERIALS AND METHODS
In this study the commercially available powder of FeNiCrBSiC self-fluxing
alloy (Ni – 37 wt %, Cr – 14 wt %, Si – 2.5 wt %, C – 1.4 wt %, B – 2.2 wt %,
Mo < 1 wt %, Fe – base) was chosen for the development of the composite
material. This alloy is classified as the eutectic one; its base is a readily available
and inexpensive component, i.e., iron, making it promising for the fabrication of
wear-resistant composite powder materials. The FeNiCrBSiC powder was melted
in alumina crucibles at 1150–1200 °C under vacuum conditions (p = 10–4 Pa).
Small pieces of the solidified FeNiCrBSiC alloy were used for wetting tests.
Hot-pressed TiB2 and TiC plates (14×14×2 mm) were applied as the substrates
for the tests. Apparent porosity of the TiB2 and TiC specimens was 2.5 %.
Wetting studies were carried out by means of the sessile drop technique in a
special furnace. The sessile drop tests were performed at temperature T = 1150 °C
under vacuum conditions (2·10–3 Pa). Just before sessile drop test the ceramic plate
and alloy piece were cleaned with alcohol. After the test, the metal-ceramic
couples were cooled inside the vacuum chamber until the temperature dropped to
20 °C.
The microstructural and energy dispersive spectroscopy (EDS) analysis of
cross-sectioned metal-ceramic couples were performed using scanning electron
microscopes (SEM) JEOL-9500FS and REM-106I.
EXPERIMENTAL RESULTS AND DISCUSSION
The FeNiCrBSiC alloy wets TiB2 and TiC substrates as shown in Fig. 1. The
initial contact angle of TiC wetting by the FeNiCrBSiC alloy is 117° and then the
contact angle changes slowly until the final value θ = 51° is reached (see Fig. 1,
curve 1). The FeNiCrBSi alloy wets TiB2 substrate, forming the final contact angle
of 36° in 15 min from the melting point (see Fig. 1, curve 2).
1 5 10 15 20 t, min
1
2
θ, deg
20
40
60
80
100
120
Fig. 1. Wetting kinetics in the refractory compound–FeNiCrBSiC systems: 1 – TiC; 2 – TiB2.
To understand the interaction mechanism in the TiC–FeNiCrBSiC and TiB2–
FeNiCrBSiC systems, the reaction thermodynamics have been calculated [6, 7].
ISSN 0203-3119. Сверхтвердые материалы, 2017, № 2 37
The calculations of the changes in the reaction enthalpy ΔН°298 make possible to
compare the feasibility and favorability of these reactions and to detect the
expected stable phases and their compositions at the metal/ceramic interface.
Reactions at the ceramic/metal interface cause the formation of new phases, which
can influence both the wetting in system and performance of composite materials.
The reactions that can occur in the TiB2/FeNiCrBSiC system between the substrate
and alloy components are as follows:
TiB2–FeNiCrBSiC system:
TiB2 + 4Cr = 2Cr2B + Ti ΔН°298 = –142.29 kJ/mol-at B (1)
3TiB2 + 10Cr = 2Cr5B3 + 3T ΔН°298 = –276.17 kJ/mol-at B (2)
TiB2 + 2Cr = 2CrB + Ti ΔН°298 = +8.15 kJ/mol-at B (3)
2TiB2 + 3Cr = Cr3B4 + 2Ti ΔН°298 = +91.44 kJ/mol-at B (4)
TiB2 + Cr = CrB2 + Ti ΔН°298 = +64.25 kJ/mol-at (5)
TiB2 + 4Fe = 2Fe2B + Ti ΔН°298 = +132.87 kJ/mol-at B (6)
TiB2 + 2Fe = 2FeB + Ti ΔН°298 = +60.57 kJ/mol-at B (7)
TiB2 + 4Ni = 2Ni2B + Ti ΔН°298 = –101.05 kJ/mol-at B (8)
3TiB2 + 8Ni = 2Ni4B3 + 3Ti ΔН°298 = –228.79 kJ/mol-at B (9)
TiB2 + 6Ni = 2Ni3B + Ti ΔН°298 = –237.93 kJ/mol-at B (10)
TiB2 + 2Ni = 2NiB + Ti ΔН°298 = +36.07 kJ/mol-at B (11)
TiB2 + Ni = NiB2 + Ti ΔН°298 = +104.62 kJ/mol-at B (12)
5TiB2 + 3Si = Ti5Si3 + 10B ΔН°298 = +301.25 kJ/mol-at Si (13)
TiB2 + Si = TiSi + 2B ΔН°298 = +54.39 kJ/mol-at Si (14)
TiB2 + 2Si = TiSi2 + 2B ΔН°298 = +55.46 kJ/mol-at Si (15)
TiB2 + C = TiC + 2B ΔН°298 = +6.09 kJ/mol-at C (16)
2TiB2 + C = B4C + 2Ti ΔН°298 = +317.54 kJ/mol-at C (17)
Thermodynamic studies have shown that the reactions (1), (2), (9) and (10)
have negative values of enthalpy changes and are considered as thermodynamically
feasible.
TiC–FeNiCrBSiC system:
6TiC + 23Cr = Cr23C6 + 6Ti ΔН°298 = +511.3 kJ/mol-at C (18)
7TiC + 3Cr = Cr3C7 + 7Ti ΔН°298 = +1081.58 kJ/mol-at C (19)
www.ism.kiev.ua/stm 38
2TiC + 3Cr = Cr3C2 + 2Ti ΔН°298 = +270.26 kJ/mol-at C (20)
TiC + B = TiB + C ΔН°298 = +23.48 kJ/mol-at C (21)
3TiC + 4B = Ti3B4 + 3C ΔН°298 = +40.75 kJ/mol-at C (22)
TiC + 2B = TiB2 + C ΔН°298 = –6.09 kJ/mol-at C (23)
2TiC + 5B = Ti2B5 + 2C ΔН°298 = –42.04 kJ/mol-at C (24)
TiC + 4B = B4C + Ti ΔН°298 = +121.68 kJ/mol-at C (25)
5TiC + 3Si = Ti5Si3 + 5C ΔН°298 = +336.82 kJ/mol-at Si (26)
TiC + Si = TiSi + C ΔН°298 = +53.98 kJ/mol-at Si (27)
TiC + 2Si = TiSi2 + C ΔН°298 = +49.37 kJ/mol-at Si (28)
TiC + Si = SiC + Ti ΔН°298 = –121.75 kJ/mol-at Si (29)
The thermodynamic studies have shown that reactions (23), (24), (9) and (29)
are thermodynamically feasible due to the negative values of enthalpy reaction
changes.
Thus, some chemical reactions can occur both in the TiB2–FeNiCrBSiC and
TiC–FeNiCrBSiC systems. The Cr5B3, Ni3B and Ni4B3 phases are the main
reaction products at the interface in the TiB2–NiCrBSiC system. It should be noted,
that the same phases are found to be formed in the FeNiCrBSiC alloy [1]. That is
why the formation of Cr5B3, Ni3B and Ni4B3 should not lead to the deterioration of
composite materials properties. Indeed, the formation of Ti2B5 and SiC compounds
are more likely to precipitate at the metal/ceramic interface in the TiC–
FeNiCrBSiC system. It is reasonable to assume that the formation of such new
compounds affects the wetting behaviour of the TiC–FeNiCrBSiC system
increasing the contact angle. Therefore, the titanium carbide is worse wetted by the
FeNiCrBSiC alloy as compared with TiB2. Furthermore, the formation of such
compounds in the TiC–FeNiCrBSiC system can cause the embitterment of
composite materials. Taking into account the wetting behavior and thermodynamic
calculations, TiB2 was chosen as more attractive reinforcing additive for a Fe-
based self-fluxing alloy.
The structure of the cross-sectioned, the TiB2–FeNiCrBSiC couple has been
studied by the SEM microanalysis after complete the sessile drop test. Three main
areas were revealed in the TiB2–FeNiCrBSiC system: the solidified drop
(Spectrum 1), the interaction region (Spectrum 2, 3), and the ceramic substrate
(Spectrum 4) (Fig. 2).
The heterogeneous structure of a solidified drop presents an eutectic that
consists of (FeNi)Si-based matrix (Fig. 3, a, point 4, the table) and grains of Cr, Fe,
Ni and Mo carboborides (see Fig. 3, a, point 1–3, the table).
The formation of 70 μm-thick interaction region was detected at the alloy-
ceramic interface. The interaction region comprises two zones: on the FeNiCrBSiC
drop side and TiB2 side. The interaction zone on the drop side is 40 µm thick and
characterized by the (FeNi)Si matrix and the diffusion redistribution of elements
(see Fig. 2, Spectrum 2). Obviously, the ceramic substrate dissolution into melted
ISSN 0203-3119. Сверхтвердые материалы, 2017, № 2 39
alloy and penetration of the melted alloy into the solid take place. Boron diffuses
from the TiB2 substrate into the drop region resulting in the formation of large
complex Cr, Fe, and Mo boride grains of up to 10–30 µm in size (see Fig. 3, b,
point 2).
a
Spectrum 1
Spectrum 2
Spectrum 3
Spectrum 4
b
Fig. 2. Structure of the TiB2–FeNiCrBSiC couple showing: general view of the TiB2–
FeNiCrBSiC sample (a), interface region (b).
a
b
Fig. 3. Structure of a drop (a) and the interaction region on the drop side (b) in the TiB2–
FeNiCrBSiC system.
Chemical composition of the interaction products in the TiB2–FeNiCrBSiC
system
Element, wt %
Structure Point
B C Si Ti Cr Fe Ni Mo
Drop
(Fig. 3, a)
1
2
3
4
4.64
7.10
5.12
–
1.41
1.41
0.24
0.23
0.15
0.07
–
7.12
–
–
–
45.06
44.13
11.88
1.48
23.68
25.13
56.75
20.81
9.38
8.68
24.79
70.26
15.68
13.16
0.36
–
Interaction
zone on the
drop side
(Fig. 3, b)
1
2
3
8.00
7.47
–
–
–
–
–
–
3.74
–
–
–
44.73
31.45
4.29
21.63
14.54
37.00
6.17
4.49
54.97
19.35
40.66
–
www.ism.kiev.ua/stm 40
(Contd.)
Interaction
zone on the
substrate side
(Fig. 4)
1
2
3
4
0.34
–
6.60
1.28
6.89
15.60
1.48
1.65
0.62
0.75
2.41
–
61.82
52.12
0.85
1.46
2.58
3.66
26.46
34.97
2.27
3.28
26.52
12.93
3.44
6.27
22.33
5.09
12.83
14.24
12.06
42.00
The thickness of the interaction zone on the TiB2 side reaches 30 µm. The
heterogeneous structure of this zone includes grains of Fe, Ni, Cr and Mo complex
borides (Fig. 4, point 3, 4), whose composition varies across the interface region.
Moreover, the grains of titanium carbide were found to form in the interaction
region (Fig. 5), that can be explained by the carbon diffusion from the drop zone
into the metal-ceramic interface during high-temperature test. It is also confirmed
by the fact that the solidified drop contact area has lower C content (up to
0.4 wt %) as compared with the initial one in the FeNiCrBSiC alloy (1.4 wt %).
Fig. 4. Structure of the interaction region on the substrate side in the TiB2–FeNiCrBSiC system.
So, the results obtained indicate that the interaction region is formed at the
metal-ceramic boundary due to some chemical reactions and diffusion of TiB2 and
FeNiCrBSiC elements. The structure of the interaction region consists of the
(FeNi)Si-based matrix and inclusions of Fe, Ni, Cr and Mo complex borides.
CONCLUSIONS
The wettability of TiB2 and TiC substrates by the FeNiCrBSiC self-fluxing
alloy was investigated by means of a sessile drop technique. The FeNiCrBSiC
alloy demonstrates good wetting with TiB2 and CrB2 substrates forming a final
contact angles of 36° and 0, respectively. The contact angle of TiC wetting by
FeNiCrBSiC alloy is 51°.
Thermodynamic calculations revealed that some chemical reactions can occur
both in the TiB2–FeNiCrBSiC and TiC–FeNiCrBSiC systems. The obtained results
suggest that the interaction in the TiB2–FeNiCrBSiC system during composite
materials sintering promotes the formation of additional hard boride and carbide
phases. The investigation of interaction region in the TiB2–FeNiCrBSiC system
confirms the formation of heterogeneous structure composed by a (FeNi)Si-based
matrix and complex Cr, Fe, Ni and Mo carboborides.
ISSN 0203-3119. Сверхтвердые материалы, 2017, № 2 41
Fe
Ni
Si
B
Cr
Mo
Ti
C
Fig. 5. Chemical elements distribution within the interface region between the drop and ceramic
substrate in the TiB2–FeNiCrBSiC system.
So, the addition of TiB2 particles into FeNiCrBSiC alloy as well as formation of
new complex carbide and boride phases should improve the wear-performance of
www.ism.kiev.ua/stm 42
TiB2–FeNiCrBSiC composite materials and coatings. Furthermore, in our previous
studies, the positive effect of TiB2 additives into a Ni-based self-fluxing alloy on
the structure and operating performance has been shown [3, 8]. Thus, TiB2 is a
promising candidate for reinforcing additives for Fe-based self-fluxing alloy in
order to develop composite powder material for the wear-resistant coatings.
Досліджено змочування та контактну взаємодію в системах TiC–
FeNiCrBSiC і TiB2–FeNiCrBSiC. Кінетику змочування вивчено методом “лежачої краплі”
в вакуумі при температурі 1150 °C. Кути змочування TiC і TiB2 самофлюсівним сплавом
на основі заліза становили 51° і 36° відповідно. Для виявлення особливостей контактної
взаємодії на межі металевий сплав–кераміка проведено термодинамічні розрахунки
систем TiC–FeNiCrBSiC і TiB2–FeNiCrBSiC. Методами оптичної та скануючої
електронної мікроскопії вивчено структуру зони взаємодії в системі TiB2–FeNiCrBSiC.
Виявлено формування складних боридів Fe, Ni, Cr і Mo в зоні взаємодії системи TiB2–
FeNiCrBSiC.
Ключові слова: самофлюсівний сплав, тугоплавка сполука, кут
змочування, контактна взаємодія, диборид титану.
Исследовали смачивание и контактное взаимодействие в системах
TiC–FeNiCrBSiC и TiB2–FeNiCrBSiC. Кинетику смачивания изучали методом “лежащей
капли” в вакууме при температуре 1150 °C. Углы смачивания TiC и TiB2 самофлюсую-
щимся сплавом на основе никеля составляли 51° и 36° соответственно. Для выявления
особенностей контактного взаимодействия на границе металлический сплав–керамика
были проведены термодинамические расчеты систем TiC–FeNiCrBSiC и TiB2–
FeNiCrBSiC. Методами оптической и электронной микроскопии изучали структуру зоны
взаимодействия в системе TiB2–FeNiCrBSiC. Установлено формирование сложных
боридов Fe, Ni, Cr и Mo в зоне взаимодействия системы TiB2–FeNiCrBSiC.
Ключевые слова: самофлюсующийся сплав, тугоплавкое соединение,
угол смачивания, контактное взаимодействие, борид титана.
1. Piao Z., Xu B., Wang H., Wen D. Characterization of Fe-based alloy coating deposited by
supersonic plasma spraying // Fusion Eng. Des. – 2013. – 88, N 11. – P. 2933–2938.
2. Klinskaya-Rudenskaya N. A., Kuzmin B. P. Influence of refractory additives on the structure
and performance of self-fluxing alloy-based coatings // Phys. Chem. Mater. Proc. – 1996. –
N 1. – P. 55–61.
3. Umanskyi A. P., Storozhenko M. S., Hussainova I. V. et al. Structure, phase composition and
wear mechanisms of plasma-sprayed NiCrBSi-20 wt % TiB2 coating // Powder Metall. Met.
Ceram. – 2015. – 53. – P. 663–671.
4. Umanskyi O., Hussainova I., Storozhenko M. et al. Effect of oxidation on sliding wear
behavior of NiCrSiB–TiB2 plasma sprayed coatings // Key Eng. Mater. – 2014. – 604. –
P. 16–19.
5. Umanskyi O., Storozhenko M., Hussainova I. et al. Effect of TiB2 additives on wear behavior
of NiCrSiB-based plasma sprayed coatings // Mater. Sci. – 2016. – 22. – P. 15–19.
6. Моисеев Г. К., Ивановский А. Л. Стандартные энтальпии образования родственных
соединений в системах металл–бор // Изв. Челяб. науч. центра. – 2005. – Вып. 3 (29). –
С. 5–9.
7. Свойства, получение и применение тугоплавких соединений: Справ. / Под ред. Т. Я. Ко-
солоповой. – М.: Металлургия, 1986. – 928 с.
8. Терентьев А. Е., Красовский В. П., Стороженко М. С. и др. Исследование закономер-
ностей смачивания боридов циркония, титана, хрома и карбида титана самофлю-
сующимся сплавом на никелевой основе // Адгезия расплавов и пайка материалов. –
2012. – № 45. – C. 79–85.
Received 05.08.15
<<
/ASCII85EncodePages false
/AllowTransparency false
/AutoPositionEPSFiles true
/AutoRotatePages /None
/Binding /Left
/CalGrayProfile (Dot Gain 20%)
/CalRGBProfile (sRGB IEC61966-2.1)
/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
/sRGBProfile (sRGB IEC61966-2.1)
/CannotEmbedFontPolicy /Warning
/CompatibilityLevel 1.4
/CompressObjects /Off
/CompressPages true
/ConvertImagesToIndexed true
/PassThroughJPEGImages true
/CreateJobTicket false
/DefaultRenderingIntent /Default
/DetectBlends true
/DetectCurves 0.1000
/ColorConversionStrategy /LeaveColorUnchanged
/DoThumbnails true
/EmbedAllFonts true
/EmbedOpenType false
/ParseICCProfilesInComments true
/EmbedJobOptions true
/DSCReportingLevel 0
/EmitDSCWarnings false
/EndPage -1
/ImageMemory 1048576
/LockDistillerParams true
/MaxSubsetPct 100
/Optimize false
/OPM 1
/ParseDSCComments true
/ParseDSCCommentsForDocInfo true
/PreserveCopyPage true
/PreserveDICMYKValues true
/PreserveEPSInfo true
/PreserveFlatness true
/PreserveHalftoneInfo false
/PreserveOPIComments false
/PreserveOverprintSettings true
/StartPage 1
/SubsetFonts true
/TransferFunctionInfo /Remove
/UCRandBGInfo /Preserve
/UsePrologue false
/ColorSettingsFile ()
/AlwaysEmbed [ true
]
/NeverEmbed [ true
]
/AntiAliasColorImages false
/CropColorImages true
/ColorImageMinResolution 300
/ColorImageMinResolutionPolicy /OK
/DownsampleColorImages false
/ColorImageDownsampleType /Bicubic
/ColorImageResolution 300
/ColorImageDepth 8
/ColorImageMinDownsampleDepth 1
/ColorImageDownsampleThreshold 1.50000
/EncodeColorImages true
/ColorImageFilter /FlateEncode
/AutoFilterColorImages false
/ColorImageAutoFilterStrategy /JPEG
/ColorACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/ColorImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000ColorACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000ColorImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasGrayImages false
/CropGrayImages true
/GrayImageMinResolution 300
/GrayImageMinResolutionPolicy /OK
/DownsampleGrayImages false
/GrayImageDownsampleType /Bicubic
/GrayImageResolution 300
/GrayImageDepth 8
/GrayImageMinDownsampleDepth 2
/GrayImageDownsampleThreshold 1.50000
/EncodeGrayImages true
/GrayImageFilter /FlateEncode
/AutoFilterGrayImages false
/GrayImageAutoFilterStrategy /JPEG
/GrayACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/GrayImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000GrayACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000GrayImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasMonoImages false
/CropMonoImages true
/MonoImageMinResolution 1200
/MonoImageMinResolutionPolicy /OK
/DownsampleMonoImages false
/MonoImageDownsampleType /Bicubic
/MonoImageResolution 1200
/MonoImageDepth -1
/MonoImageDownsampleThreshold 1.50000
/EncodeMonoImages true
/MonoImageFilter /CCITTFaxEncode
/MonoImageDict <<
/K -1
>>
/AllowPSXObjects false
/CheckCompliance [
/None
]
/PDFX1aCheck false
/PDFX3Check false
/PDFXCompliantPDFOnly false
/PDFXNoTrimBoxError true
/PDFXTrimBoxToMediaBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXSetBleedBoxToMediaBox true
/PDFXBleedBoxToTrimBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXOutputIntentProfile (None)
/PDFXOutputConditionIdentifier ()
/PDFXOutputCondition ()
/PDFXRegistryName ()
/PDFXTrapped /False
/CreateJDFFile false
/Description <<
/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
/ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
/JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
/ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
/RUS ()
>>
/Namespace [
(Adobe)
(Common)
(1.0)
]
/OtherNamespaces [
<<
/AsReaderSpreads false
/CropImagesToFrames true
/ErrorControl /WarnAndContinue
/FlattenerIgnoreSpreadOverrides false
/IncludeGuidesGrids false
/IncludeNonPrinting false
/IncludeSlug false
/Namespace [
(Adobe)
(InDesign)
(4.0)
]
/OmitPlacedBitmaps false
/OmitPlacedEPS false
/OmitPlacedPDF false
/SimulateOverprint /Legacy
>>
<<
/AddBleedMarks false
/AddColorBars false
/AddCropMarks false
/AddPageInfo false
/AddRegMarks false
/ConvertColors /NoConversion
/DestinationProfileName ()
/DestinationProfileSelector /NA
/Downsample16BitImages true
/FlattenerPreset <<
/PresetSelector /MediumResolution
>>
/FormElements false
/GenerateStructure true
/IncludeBookmarks false
/IncludeHyperlinks false
/IncludeInteractive false
/IncludeLayers false
/IncludeProfiles true
/MultimediaHandling /UseObjectSettings
/Namespace [
(Adobe)
(CreativeSuite)
(2.0)
]
/PDFXOutputIntentProfileSelector /NA
/PreserveEditing true
/UntaggedCMYKHandling /LeaveUntagged
/UntaggedRGBHandling /LeaveUntagged
/UseDocumentBleed false
>>
]
>> setdistillerparams
<<
/HWResolution [2400 2400]
/PageSize [612.000 792.000]
>> setpagedevice
|