Superhard pcBN tool materials with Ti₃SiC₂ MAX-phase binder: structure, properties, application
Superhard cutting tool materials were sintered in cBN–(Ti₃SiC₂–TiC) system via high pressure–high temperature method. Sintering was performed under the pressure 8 GPa in the 1400–2400 °C temperature range. The initial mixtures of three compositions were chosen with 90, 80 and 60 vol % cBN. The mixtu...
Gespeichert in:
| Veröffentlicht in: | Сверхтвердые материалы |
|---|---|
| Datum: | 2017 |
| Hauptverfasser: | , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України
2017
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/160115 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Superhard pcBN tool materials with Ti₃SiC₂ MAX-phase binder: structure, properties, application / T. Kolabylina, V. Bushlya, I. Petrusha, D. Johansson, J.-E. Ståhl, V. Turkevych // Сверхтвердые материалы. — 2017. — № 3. — С. 11-23. — Бібліогр.: 18 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-160115 |
|---|---|
| record_format |
dspace |
| spelling |
Kolabylina, T. Bushlya, V. Petrusha, I. Johansson, D. Ståhl, J.-E. Turkevych, V. 2019-10-23T17:52:19Z 2019-10-23T17:52:19Z 2017 Superhard pcBN tool materials with Ti₃SiC₂ MAX-phase binder: structure, properties, application / T. Kolabylina, V. Bushlya, I. Petrusha, D. Johansson, J.-E. Ståhl, V. Turkevych // Сверхтвердые материалы. — 2017. — № 3. — С. 11-23. — Бібліогр.: 18 назв. — англ. 0203-3119 https://nasplib.isofts.kiev.ua/handle/123456789/160115 621.9.025.7:621.762.5:661.657.5 Superhard cutting tool materials were sintered in cBN–(Ti₃SiC₂–TiC) system via high pressure–high temperature method. Sintering was performed under the pressure 8 GPa in the 1400–2400 °C temperature range. The initial mixtures of three compositions were chosen with 90, 80 and 60 vol % cBN. The mixtures were prepared by mixing cBN (1–3 μm) and Ti₃SiC₂–TiC (< 2 μm). It was found, that upon sintering, the compositions of the obtained samples differed from the initial mixtures in all cases as a result of chemical reactions. Microstructure observations, phase composition estimation, and mechanical properties of the obtained tool materials were carried out. The results indicate that both the varying cBN content and the applied sintering conditions have a direct effect on the structure, properties, and kinetics of reactions. Надтверді матеріали системи cBN–(Ti₃SiC₂–TiC) при високому тиску і високій температурі. Спікання проводили при тиску 8 ГПа в температурному діапазоні 1400–2400 °С. Вихідні суміші трьох композицій були обрані з вмістом cBN 90, 80 і 60 % (за об’ємом). Суміші були приготовані шляхом змішування cBN (1–3 мм) и Ti₃SiC₂–TiC (< 2 мм). Було встановлено, що після спікання в результаті хімічних реакцій склад отриманих зразків відрізняється від складу вихідних сумішей. Проводили спостереження мікроструктури, оцінку фазового складу і механічних властивостей отриманих інструментальних матеріалів. Результати вказують на те, що різний зміст cBN і застосовані умови спікання чинять прямий вплив на структуру, властивості і кінетику реакцій. Сверхтвердые инструментальные материалы системы cBN–(Ti₃SiC₂–TiC) были спечены при высоком давлении и высокой температуре. Спекание проводили при давлении 8 ГПа в температурном диапазоне от 1400 до 2400 °С. Исходные смеси трех композиций были выбраны с содержанием cBN 90, 80 и 60 % (по объему). Смеси были приготовлены смешиванием порошков cBN (1–3 мм) и Ti₃SiC₂–TiC (< 2 мм). Было установлено, что после спекания в результате химических реакций состав полученных образцов во всех случаях отличается от состава исходных смесей. Проводили наблюдения микроструктуры, оценка фазового состава и механических свойств полученных инструментальных материалов. Результаты указывают на то, что разное содержание cBN и применяемые условия спекания оказывают прямое влияние на структуру, свойства и кинетику реакций. This work was co-funded by the European Union’s Horizon 2020 Research and Innovation Program under Flintstone2020 project (grant agreement No 689279). It is also a part of the strategic research program of the Sustainable Production Initiative SPI, involving cooperation between the Lund University and the Chalmers University of Technology. The author (TK) wishes to acknowledge the support provided by the Swedish Institute scholarship. en Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України Сверхтвердые материалы Получение, структура, свойства Superhard pcBN tool materials with Ti₃SiC₂ MAX-phase binder: structure, properties, application Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Superhard pcBN tool materials with Ti₃SiC₂ MAX-phase binder: structure, properties, application |
| spellingShingle |
Superhard pcBN tool materials with Ti₃SiC₂ MAX-phase binder: structure, properties, application Kolabylina, T. Bushlya, V. Petrusha, I. Johansson, D. Ståhl, J.-E. Turkevych, V. Получение, структура, свойства |
| title_short |
Superhard pcBN tool materials with Ti₃SiC₂ MAX-phase binder: structure, properties, application |
| title_full |
Superhard pcBN tool materials with Ti₃SiC₂ MAX-phase binder: structure, properties, application |
| title_fullStr |
Superhard pcBN tool materials with Ti₃SiC₂ MAX-phase binder: structure, properties, application |
| title_full_unstemmed |
Superhard pcBN tool materials with Ti₃SiC₂ MAX-phase binder: structure, properties, application |
| title_sort |
superhard pcbn tool materials with ti₃sic₂ max-phase binder: structure, properties, application |
| author |
Kolabylina, T. Bushlya, V. Petrusha, I. Johansson, D. Ståhl, J.-E. Turkevych, V. |
| author_facet |
Kolabylina, T. Bushlya, V. Petrusha, I. Johansson, D. Ståhl, J.-E. Turkevych, V. |
| topic |
Получение, структура, свойства |
| topic_facet |
Получение, структура, свойства |
| publishDate |
2017 |
| language |
English |
| container_title |
Сверхтвердые материалы |
| publisher |
Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України |
| format |
Article |
| description |
Superhard cutting tool materials were sintered in cBN–(Ti₃SiC₂–TiC) system via high pressure–high temperature method. Sintering was performed under the pressure 8 GPa in the 1400–2400 °C temperature range. The initial mixtures of three compositions were chosen with 90, 80 and 60 vol % cBN. The mixtures were prepared by mixing cBN (1–3 μm) and Ti₃SiC₂–TiC (< 2 μm). It was found, that upon sintering, the compositions of the obtained samples differed from the initial mixtures in all cases as a result of chemical reactions. Microstructure observations, phase composition estimation, and mechanical properties of the obtained tool materials were carried out. The results indicate that both the varying cBN content and the applied sintering conditions have a direct effect on the structure, properties, and kinetics of reactions.
Надтверді матеріали системи cBN–(Ti₃SiC₂–TiC) при високому тиску і високій температурі. Спікання проводили при тиску 8 ГПа в температурному діапазоні 1400–2400 °С. Вихідні суміші трьох композицій були обрані з вмістом cBN 90, 80 і 60 % (за об’ємом). Суміші були приготовані шляхом змішування cBN (1–3 мм) и Ti₃SiC₂–TiC (< 2 мм). Було встановлено, що після спікання в результаті хімічних реакцій склад отриманих зразків відрізняється від складу вихідних сумішей. Проводили спостереження мікроструктури, оцінку фазового складу і механічних властивостей отриманих інструментальних матеріалів. Результати вказують на те, що різний зміст cBN і застосовані умови спікання чинять прямий вплив на структуру, властивості і кінетику реакцій.
Сверхтвердые инструментальные материалы системы cBN–(Ti₃SiC₂–TiC) были спечены при высоком давлении и высокой температуре. Спекание проводили при давлении 8 ГПа в температурном диапазоне от 1400 до 2400 °С. Исходные смеси трех композиций были выбраны с содержанием cBN 90, 80 и 60 % (по объему). Смеси были приготовлены смешиванием порошков cBN (1–3 мм) и Ti₃SiC₂–TiC (< 2 мм). Было установлено, что после спекания в результате химических реакций состав полученных образцов во всех случаях отличается от состава исходных смесей. Проводили наблюдения микроструктуры, оценка фазового состава и механических свойств полученных инструментальных материалов. Результаты указывают на то, что разное содержание cBN и применяемые условия спекания оказывают прямое влияние на структуру, свойства и кинетику реакций.
|
| issn |
0203-3119 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/160115 |
| citation_txt |
Superhard pcBN tool materials with Ti₃SiC₂ MAX-phase binder: structure, properties, application / T. Kolabylina, V. Bushlya, I. Petrusha, D. Johansson, J.-E. Ståhl, V. Turkevych // Сверхтвердые материалы. — 2017. — № 3. — С. 11-23. — Бібліогр.: 18 назв. — англ. |
| work_keys_str_mv |
AT kolabylinat superhardpcbntoolmaterialswithti3sic2maxphasebinderstructurepropertiesapplication AT bushlyav superhardpcbntoolmaterialswithti3sic2maxphasebinderstructurepropertiesapplication AT petrushai superhardpcbntoolmaterialswithti3sic2maxphasebinderstructurepropertiesapplication AT johanssond superhardpcbntoolmaterialswithti3sic2maxphasebinderstructurepropertiesapplication AT stahlje superhardpcbntoolmaterialswithti3sic2maxphasebinderstructurepropertiesapplication AT turkevychv superhardpcbntoolmaterialswithti3sic2maxphasebinderstructurepropertiesapplication |
| first_indexed |
2025-11-27T09:37:14Z |
| last_indexed |
2025-11-27T09:37:14Z |
| _version_ |
1850809930868588544 |
| fulltext |
ISSN 0203-3119. Сверхтвердые материалы, 2017, № 3 11
UDC 621.9.025.7:621.762.5:661.657.5
T. Kolabylina1, 2, *, V. Bushlya2, I. Petrusha1, D. Johansson2,
J.-E. Ståhl2, V. Turkevich1,
1Bakul Institute for Superhard Materials,
National Academy of Sciences of Ukraine, Kiev, Ukraine
2Division of Production and Materials Engineering, Lund University,
Lund, Sweden
*tetiana.kolabylina@chemie.tu-freiberg.de
Superhard pcBN tool materials with Ti3SiC2
MAX-phase binder: structure, properties,
application
Superhard cutting tool materials were sintered in cBN–(Ti3SiC2–TiC)
system via high pressure–high temperature method. Sintering was performed under the
pressure 8 GPa in the 1400–2400 °C temperature range. The initial mixtures of three
compositions were chosen with 90, 80 and 60 vol % cBN. The mixtures were prepared
by mixing cBN (1–3 μm) and Ti3SiC2–TiC (< 2 μm). It was found, that upon sintering,
the compositions of the obtained samples differed from the initial mixtures in all cases
as a result of chemical reactions. Microstructure observations, phase composition
estimation, and mechanical properties of the obtained tool materials were carried out.
The results indicate that both the varying cBN content and the applied sintering
conditions have a direct effect on the structure, properties, and kinetics of reactions.
Keywords: pcBN, Ti3SiC2 MAX-phase, HPHT.
INTRODUCTION
The pcBN tool materials have found their applications in
machining operations when cutting difficult-to-machine materials and hardened
steels [1–3]. ISO 1832:2012 [4] differentiates pcBN materials into grades with
low-cBN and high-cBN contents with respective application areas of finish
machining and roughing or interrupted cuts. Low-cBN grades often contain TiC,
Ti(C,N) or TiN binders [5]. Alternative binding phases, which can handle high
temperatures and high level of chemical and abrasive wear, are continuously
sought for.
First discovered at 60-th layered ternary carbides (so-called MAX-phases1)
came back under the spot last decades [6]. Being built of carbide blocks they are
still not the same with normal carbides and fall under an intermediate class
between metals and ceramics. What makes them behave differently from normal
carbides is their structure, which determinates their ability to withstand elevated
temperatures, tolerate high stresses, and possess high compactibility of their
powder products. Preliminary studies by the authors have shown that compaction
1 Layered, hexagonal carbides and nitrides with general formula: Mn+1AXn, (MAX
phases) where n = 1 to 3, M is an early transition metal, A is an A-group (mostly IIIA
and IVA, or groups 13 and 14) element and X is either carbon and/or nitrogen possess-
ing with whole set of needed properties.
© T. KOLABYLINA, V. BUSHLYA, I. PETRUSHA, D. JOHANSSON, J.-E. STÅHL, V. TURKEVYCH, 2017
www.ism.kiev.ua/stm 12
rate for commercially available Ti3SiC2 and Ti2AlC MAX-phases is the highest,
slightly below their decomposition temperature.
In attempts to introduce these positive MAX-phase properties into tool materi-
als many research studies have involved sintering of superhard tool materials based
on diamond or cubic boron nitride with commercially available MAX-phases
[7–13].
Multiple sintering techniques were used for production of cutting tool materials.
Starting from pressureless sintering [8], hot pressing at pressure 20–35 MPa [13],
and up to high pressure–high temperature (HPHT) techniques synthesis [9–11]. In
these cases Ti3SiC2 MAX-phase was in-situ sintered from starting Ti, Si, SiC, TiC
powders together with superhard diamond or cBN filler. Effect of the cBN filler
amount on sintering conditions was investigated. For a diamond filler, it was found
that the increased diamond content significantly promotes a Ti3SiC2 formation
[13]. In many cases a partial reverse transformation of diamond and cBN were
observed because superhard phases become unstable under conditions required for
the efficient MAX-phase sintering [8, 12, 14].
Alternatively, sintering can involve preliminary obtained MAX-phase used as a
binder in order to solve the mentioned reverse transformation difficulties. In such a
case both MAX-phase and superhard phase need to be preserved while sintering
the cutting tool material. Decomposition of MAX-phase needs to be prevented.
High pressure sintering was found to provide a solution due to reduced
requirements to sintering temperatures, which decreases by approx. one hundred
degrees [14] in comparison to other techniques. Additionally, sintering time is
significantly shortened.
The application of high pressure may activate decompositions of certain MAX-
phases [15]. The use of such MAX-phases as precursors for pcBN tool materials
results in multiphase composite material due to chemical reactions. For example in
the case of Ti3SiC2, depending on sintering conditions TiB2, TiC, TiN, SiB3, and
SiC phases are expected [9, 10, 16]. This phase composition is somewhat similar to
cBN–TiC and cBN–TiN commercial materials. At the same time two main
differences can be expected. First, the observed decomposition of Ti3SiC2 is ex-
pected to result in fine-grained microstructure. Second, this microstructure pos-
sesses a multi-phase composition (5–6 phases), where all phases have high hard-
ness.
The aim of this study is to estimate the influence of the sintering conditions and
binder content on the structure and properties of the cBN–Ti3SiC2–TiC composite.
The microstructure, phase composition, and phase stoichiometry as well as the
microhardness, fracture toughness, density, and tool material performance are
established.
EXPERIMENTAL PROCEDURE
Mixture preparation
Sintering of cutting tool materials both in high-cBN and low-cBN systems was
intended.
The compositions of the initial mixtures are listed in Table 1. cBN powder with
grain sizes of 1–3 μm was admixed with Ti3SiC2 and TiC powders. Ti3SiC2 powder
was obtained by milling commercial Maxtal 312 ceramic material down to the
fineness of 0.2–2 μm. Small amount of graphite and approximately 30 vol % of
TiC have been identified in the milled products.
ISSN 0203-3119. Сверхтвердые материалы, 2017, № 3 13
Table 1. The compositions of the initial mixtures
Mixture Initial components Volume ratio
1 cBN:Ti3SiC2:TiC 90:6:4
2 cBN:Ti3SiC2:TiC 80:12:8
3 cBN:Ti3SiC2:TiC 60:24:16
Premixing was performed by a triple dry co-mixing of cBN and Ti3SiC2–TiC
powders through sieves with 20 μm cell size. The final mixing involved wet (iso-
propanol) mixing in a tumbler mixer in the presence of ZrO2 grinding bodies for
12 h. Each mixture was quality checked via SEM, XRD and EDX techniques.
Sintering of samples
The samples were sintered in a toroid type high-pressure apparatus HPA-30
[17] at the pressure of 8 GPa. A sintering temperature was selected as a variable
and ranged within 1400–2400 °C with step of 200 °C. Upon stabilization of the
pressure the sample was heated up to a predefined temperature within 5 s. The
duration of the heating cycle at a constant temperature was 45 s, then the power in
the circuit was decreased within 10 s and the pressure released. The obtained
samples were ground to RNGN090300T cutting insert shape.
Samples characterization
Prior to microscopy and indentation studies the samples were polished with
diamond suspension (1 and 9 μm) and silica colloidal solution (0.04 μm). FEI
NanoLab 600 dual beam microscope was used to analyze the microstructure.
A JSM-6700F microscope was used for the energy dispersive X-ray (EDX) analy-
sis (SDD X-Maxn EDX system, Oxford Instruments). XRD analysis of materials
was done on a STOE Darmstadt diffractometer with CuKα source. The hardness of
the tool materials was measured with Vickers and Knoop indenters at a load of
4.9 N on an Ernst Leitz Wetzlar microhardness tester. Fracture toughness was es-
timated via the indentation technique [18] at 300 N load. The density was defined
via hydrostatic weighing.
Cutting performance
Cutting performance was estimated through hard turning tests when dry
machining cold work tool steel Vanadis 4E (HRC 59). All tests involved constant
conditions: cutting speed vc = 150 m/min, feed f = 0.1 mm/rev, depth-of-cut
ap = 0.2 mm.
RESULTS
Mixing
The mixtures were found to have different mixing quality. For example, in mix-
ture with 90 vol % cBN the majority of the Ti3SiC2–TiC binder (10 vol %) was
agglomerated. Sizes of the agglomerates were in the range of 5–15 μm, while the
original binder grain size was below 2 μm. The agglomeration of Ti3SiC2–TiC was
not observed in the mixtures with 80 and 60 vol % of cBN. For all mixtures an
additional reduction of grain sizes due to grinding and flaking of MAX-phase was
present.
www.ism.kiev.ua/stm 14
All three prepared mixtures appeared to be contaminated by the presence of
small (∼ 0.2 μm) ZrO2 inclusions as detected via EDX. The source of such ZrO2
contamination is due to milling of zirconia grinding bodies themselves. The
amount, size and dispersion of zirconia inclusions was approximately the same for
all prepared mixtures. The amount of ZrO2 was not sufficient to be detected with
XRD (Fig. 1). While sintering no reactions between ZrO2 inclusions and
surrounding binder neither with cBN materials were observed. Therefore, the
presence of ZrO2 was not considered further on in the study.
10 20 30 40 50 60 70 80 90 2θ, deg
0
0.2
0.4
0.6
0.8
1.0
–cBN
–Ti
3
SiC
2
–TiC
–Graphite
In
te
ns
it
y,
a
rb
. u
ni
ts
Fig. 1. XRD pattern of the composition of a powder mixture with 60 vol % cBN.
Phase composition of sintered samples
Phase compositions of the sintered samples were determined by the XRD. It
was found that the phase compositions of all obtained samples were different from
the compositions of the initial mixtures. The main initial binder component Ti3SiC2
is not observed in the XRD patterns (Fig. 2), despite the presence of TiC in the
initial mixture, which inhibits the Ti3SiC2 decomposition [13]. Also several new
phases were detected (see Fig. 2).
30 40 50 60 70 80
0
0.5
1.0
1.5
2.0
2.5
–TiC –SiC –Ti(C,N) –cBN ♦–TiB2
♣–TiSi2
2θ, deg
♦ ♦
♦ ♦♦
In
te
ns
it
y,
a
rb
. u
ni
ts
1
♦
♣
2
3
4
5
6
Fig. 2. XRD pattern for 60 vol % cBN samples sintered under different HPHT conditions:
1400 (1), 1600 (2), 1800 (3), 2000 (4), 2200 (5), 2400 (6) °C.
ISSN 0203-3119. Сверхтвердые материалы, 2017, № 3 15
Some of these new phases are determined explicitly, like TiSi2, SiC, and TiB2.
The presence of Ti(C,N) is also confirmed by the XRD, yet the exact stoichiometry
described as TiCxNy changes with the temperature. More data on the stoichiometry
can be obtained through EDX; however, the accuracy for carbon and nitrogen light
elements is relatively low for this method.
It is worth noting that the decomposition of TiSi2 still observed at 1400 °C (see
Fig. 2) does not result in the formation of Si-containing phases up to 2000 °C. This
Si containing phase is SiC. Its low intensity SiC maximum has been detected with
XRD only for 60 vol % cBN sample. The EDX data in Fig. 3 confirm the XRD
observations by indicating the decomposition of Ti3SiC2 at 1400 °C to form TiSi2,
TiC, and TiCxNy. The majority of TiSi2 grains were found in the central region of
Ti3SiC2 decomposition and reaction products.
1
2
3
4
5 6
Fig. 3. EDX line-scan data for 80 vol % cBN sample sintered under p = 8 GPa and T = 1400 °C:
OKα1 (1), NKα1_2 (2), SiKα1 (3), TiKα1 (4), BKα1_2 (5), CKα1_2 (6).
As is seen from Fig. 4, the situation changes at the higher sintering temperature
of 2400 °C. The EDX line-scan data indicate the formation of SiC also in the cen-
tral region of the Ti3SiC2 decomposition area. It also shows that a nitrogen content
in the Ti(C,N) phase found on the sides of SiC has increased the N concentration
compared to the case of 1400 °C.
Quantitative point analysis data presented in Fig. 5 indicate that spectrum 31
corresponds to SiC, even though silicon carbide was not observed with the XRD.
Data for spectrum 32 confirm the presence of TiB2 also found with the X-ray dif-
fraction.
Additionally, the EDX data indicate the presence of oxygen, which in the aver-
age corresponds to approx. 2 at % for this sample sintered at 2400 °C. Similar
analysis for other samples sintered at different temperatures shows that higher
oxygen amount of up to 4 at % was present for T = 1400 to 1800 °C. For the entire
temperature range above 1800 °C the oxygen content decreases almost twice.
Possible reactions between the initial components of the mixture under given
sintering conditions have already been reported [6, 13]:
TiC + Ti3SiC2 → TiC + TixCy + TiSi2; (1)
cBN + TiC + TixCy + TiSi2 → cBN + TiC + TixCy + SiC + TizCv(N) + TiB2 + Siamorf . (2)
www.ism.kiev.ua/stm 16
1
2
3
4
5
Fig. 4. EDX line-scan for 90 vol % cBN sample sintered under p = 8 GPa and T = 2400 °C:
NKα1_2 (1), SiKα1 (2), TiKα1 (3), BKα1_2 (4), CKα1_2 (5).
29 30 31 32 33 34
0
10
20
30
40
50
Spectrum number
at % B
C
N
O
Si
Ti
Fig. 5. EDX point analysis for the region shown in Fig. 4.
In our case, the list of the initial components is slightly wider than the one for
reaction (2) due to the presence of minor amounts of graphite in the original mix-
tures.
ISSN 0203-3119. Сверхтвердые материалы, 2017, № 3 17
Only very weak reflections of the SiC phase were found in the XRD (see
Fig. 2). The TiB2 and SiC presence was confirmed via the EDX and XRD (Fig. 5).
The presence of amorphous silicon, however, was not confirmed in this study. The
EDX mapping presented in Fig. 6 shows that even at high sintering temperature
TiSi2 phase remains stable but not seen using the XRD, as it most likely has
amorphous nature.
Figure 6 also confirms a high oxygen content in the material microstructure.
The XRD does not show the presence of oxide phases and this indicates a
dissolution of surface oxygen into the binder phases [6].
a b
c d
e f
Fig. 6. EDX mapping of the sample with 80 vol % of cBN in the initial mixture (p = 8 GPa and
T = 2200 °C): BKα1_2 (a), CKα1_2 (b), TiKα1 (c), OKα1 (d), NKα1_1 (e), SiKα1 (f).
Microstructure
The formation of a matrix for sintered samples is determined by the
compositions of the initial mixtures. 90 vol % of cBN samples received a
predominantly cBN matrix with separate inclusions of products of Ti3SiC2
decomposition and reaction. In the case of 60 vol % cBN sample the matrix is fully
realized through the Ti3SiC2 decomposition and reaction products described in the
previous section. An intermediate situation was observed for 80 vol % cBN
www.ism.kiev.ua/stm 18
samples. However, the main influence on the obtained microstructure was
observed from the sintering temperature.
The general tendency for the influence of sintering temperature follows the next
pattern. In the temperature range of 1400–1600 °C the decomposition of Ti3SiC2
leads to the formation of products, which react with cBN; that is visible as
rounding of cBN grains. At 1800 °C the initial sintering between cBN grains was
observed, while at 2000 °C the formation of nano- and micro-pores appears on the
grain boundaries. At 2200–2400 °C the pores grow in size and have a tendency to
move to triple junctions (Fig. 7). Neither total recrystallization, nor grain growth or
grain coarsening was detected for cBN phase even at 2400 °C.
Fig. 7. SEM image of the microstructure for the sample with 80 vol % cBN sintered at T =
2400 °C.
The sintering temperature has more prominent effect on the Ti3SiC2 binder
component than on the cBN phase. Morphology of this binder component changes
in the following way: the MAX-phase decomposition in the region of T = 1400–
1600 °C results in the formation of submicron grains (Fig. 8) of phases described in
the earlier sections. At T = 1600–1800 °C the recrystallization and grain growth
processes begin.
Fig. 8. SEM image of the microstructure for the 60 vol % cBN sample sintered at T = 1400 °C.
ISSN 0203-3119. Сверхтвердые материалы, 2017, № 3 19
At temperatures above 1800 °C the microstructural transformation of the
decomposition and reaction products of Ti3SiC2 MAX-phase looks to be complete
where a clear separation of TiC, TiB2, SiC, Ti(C,N) phases is observed (Fig. 9).
This is accompanied by the formation and growth of pores on triple junctions. It
should be mentioned that some of the spheroidal grains, as shown in Fig. 8, were
present in the binder even at 2400 °C. Decomposition and reaction products of
Ti3SiC2 demonstrate the start of the recrystallization at temperatures by approx.
200–300 °C earlier.
Fig. 9. SEM image of the microstructure for the 60 vol % cBN sample sintered at T = 2000 °C.
Being sintered above 1800 °C, only samples with lowest cBN content show
density decreasing (Fig. 10). This can be related to the formation of multiple pores
in the microstructure, and also to volume changes due to the formation of new
phases as a result of a complete decomposition the (see Fig. 9).
1400 1600 1800 2000 2200 2400
3.50
3.55
3.60
3.65
3.70
3.75
3
2
1
Sintering temperature, °C
D
en
si
ty
, g
/c
m
3
Fig. 10. Average density variations for different sintering temperatures and cBN content: 60 (1),
80 (2), 90 (3) vol % cBN.
The microhardness and fracture-toughness changes closely follow (Figs. 11 and
12) the behavior of the sample density.
www.ism.kiev.ua/stm 20
1400 1600 1800 2000 2200 2400
15
20
25
30
35 3
2
1
Sintering temperature, °C
H
V
, GPa
Fig. 11. Microhardness variations for different sintering temperatures and cBN contents: 60 (1),
80 (2), 90 (3) vol % cBN.
1400 1600 1800 2000 2200 2400
3
4
5
6
7
8
9
10
3
2
1
K
Ic
, M
P
a⋅
m
1/
2
Sintering temperature, °C
Fig. 12. Fracture toughness variations for different sintering temperatures and cBN contents:
60 (1), 80 (2), 90 (3) vol % cBN.
It shows that for high-cBN samples the hardness does not change significantly
with the sintering temperature but for low-cBN samples it is decreasing. This is
most likely to be related to the formation of porosity in the sample microstructure.
The indentation fracture toughness for the low-cBN sample is the lowest among
the obtained cutting tool materials.
Cutting performance
A series of samples with the highest mechanical properties were selected for the
estimation of their application performance in machining. The results of the cutting
tests, alongside with respective mechanical properties, are listed in Table 2.
The results show that the materials with the lowest cBN content (60 vol %
cBN) and with the highest cBN content (90 vol % cBN) exhibit the best perform-
ance in terms of wear resistance to the formation of a crater on the rake face (KT)
and flank wear (VB). More descriptive information on the correlation between
mechanical properties and machining performance for samples with 60, 80, and
90 vol % cBN sintered at 2000 °C is shown in Figs. 13 and 14.
ISSN 0203-3119. Сверхтвердые материалы, 2017, № 3 21
Table 2. Results of the cutting test for samples having the best
mechanical properties
cBN content, vol % T, °C HV, GPa KIc, MPa·m1/2 KT, μm VB, μm
80 1600 30.3 6.4 55 157
90 2000 33.8 5.7 58 190
80 2000 30.0 6.0 83 269
60 2000 21.0 4.9 70 183
90 2400 35.5 6.0 44 167
90 2200 33.8 6.7 – –
90 80 60
5.0
5.5
6.0
20
25
30
35
H
V
, G
P
a
cBN content, vol %
K
Ic
, M
P
a⋅
m
1/
2
1
2
Fig. 13. Microhardness (1) and fracture toughness (2) for samples sintered at 2000 °C.
90 80 60
60
70
80
cBN content, vol %
K
T
,
μm
180
200
220
240
260
V
B
,
μm
1
2
90
Fig. 14. Crater depth KT (1) and flank wear VB (2) for samples sintered at 2000 °C.
These diagrams show that the fracture toughness, which more closely reflects
microstructural transformations and the present defects, is more indicative of tool
performance in hard turning.
CONCLUSIONS
This study addresses the HPHT sintering of superhard composite materials in
the system of cubic boron nitride with Ti3SiC2 MAX-phase binder. Three systems
www.ism.kiev.ua/stm 22
of varying cBN content sintered in the temperature range of 1400–2400 °C are
studied.
The mechanisms of the decomposition of Ti3SiC2 at the temperature of
sintering govern the formation of binder matrices for the studied composites. The
decomposition products were found to enter into the reactions with the superhard
cBN phase. The following products that create the binder matrix were found via
XRD and EDX analyses: TiC, Ti(C,N), SiC, TiB2. Additionally, in the lower
temperature range of 1400–1600 °C the products of incomplete decomposition,
such as TiSi2 and Si were also observed. The formation of pores in triple junctions
was observed for all samples, yet the most intensive formation was found for low
cBN (60 vol %) content samples. This was associated with volumetric change ob-
served when intermediate decomposition products were transformed into Ti(C,N),
SiC, and TiB2–based matrix.
The best combination of mechanical properties for cBN–Ti3SiC2–TiС fine-
grained tool materials was obtained for the sintering temperature range of T =
1800–2200 °C.
This work was co-funded by the European Union’s Horizon 2020 Research and
Innovation Program under Flintstone2020 project (grant agreement No 689279). It
is also a part of the strategic research program of the Sustainable Production
Initiative SPI, involving cooperation between the Lund University and the
Chalmers University of Technology. The author (TK) wishes to acknowledge the
support provided by the Swedish Institute scholarship.
Надтверді матеріали системи cBN–(Ti3SiC2–TiC) при високому тиску і
високій температурі. Спікання проводили при тиску 8 ГПа в температурному діапазоні
1400–2400 °С. Вихідні суміші трьох композицій були обрані з вмістом cBN 90, 80 і 60 %
(за об’ємом). Суміші були приготовані шляхом змішування cBN (1–3 мм) и Ti3SiC2–TiC
(< 2 мм). Було встановлено, що після спікання в результаті хімічних реакцій склад отри-
маних зразків відрізняється від складу вихідних сумішей. Проводили спостереження мік-
роструктури, оцінку фазового складу і механічних властивостей отриманих інструмен-
тальних матеріалів. Результати вказують на те, що різний зміст cBN і застосовані
умови спікання чинять прямий вплив на структуру, властивості і кінетику реакцій.
Ключові слова: pcBN, Ti3SiC2 MAX-фаза, HPHT.
Сверхтвердые инструментальные материалы системы cBN–(Ti3SiC2–
TiC) были спечены при высоком давлении и высокой температуре. Спекание проводили
при давлении 8 ГПа в температурном диапазоне от 1400 до 2400 °С. Исходные смеси
трех композиций были выбраны с содержанием cBN 90, 80 и 60 % (по объему). Смеси
были приготовлены смешиванием порошков cBN (1–3 мм) и Ti3SiC2–TiC (< 2 мм). Было
установлено, что после спекания в результате химических реакций состав полученных
образцов во всех случаях отличается от состава исходных смесей. Проводили наблюдения
микроструктуры, оценка фазового состава и механических свойств полученных инстру-
ментальных материалов. Результаты указывают на то, что разное содержание cBN и
применяемые условия спекания оказывают прямое влияние на структуру, свойства и
кинетику реакций.
Ключевые слова: pcBN, Ti3SiC2 MAX-фаза, HPHT.
1. Haplin T., Byrne G., Barry J., Ahearne E. The performance of polycrystalline cubic boron
nitride tools in continuous, semi-interrupted, and interrupted hard machining // J. Eng. Manuf.
– 2009. – 223. – P. 947–953.
2. Bushlya V. M., Gutnichenko O. A., Zhou J. M. et al. Tool wear and tool life of PCBN, binder-
less cBN and wBN–cBN tools in continuous finish hard turning of cold work tool steel //
J. Superhard Mater. – 2014. – 36, N 1. – P. 49–60.
ISSN 0203-3119. Сверхтвердые материалы, 2017, № 3 23
3. Bushlya V. Gutnichenko O., Zhou J. et al. Effects of cutting speed when turning age hardened
Inconel 718 with PCBN tools of binderless and low-CBN grades // Mach. Sci. Technol. –
2013. – 17, N 4. – P. 497–523.
4. ISO 1832:2012. Indexable inserts for cutting tools – Designation.
5. Barsoum M. W., Brodkin D., El-Raghy T. Layered machinable ceramics for high temperature
applications // Scripta Materialia. – 1997. – 36, N 5. – P. 535–541.
6. Angseryd J., Elfwing M., Olsson E., Andrén H.-O. Detailed microstructure of a cBN based
cutting tool material // Int. J. Refract. Met. Hard Mater. – 2009. – 27, N 2. – P. 249–255.
7. Zhu Y., Jia J., Zhou A. et al. Sintering of Ti3SiC2 ceramics by hot press from commercial
powders // Proc. 5th Int. Congress on Ceramics (ICC5), Beijing, China, 17–21 August, 2014,
publ. in Key Eng. Mater. – 2014. – 655. – P. 68–71.
8. Li Z., Zhou A., Li L. et al. Synthesis and characterization of novel Ti3SiC2–cBN composites //
Diamond Relat. Mater. – 2014. – 43. – P. 29–33.
9. Benko E., Klimczyk P., Mackiewicz S. et al. cBN–Ti3SiC2 composites // Diamond Relat. Mater.
– 2004. – 13, N 3. – P. 521–525.
10. Xue Y., Qin J., Zhang X. et al. In situ high pressure synthesis of cBN-based composites //
Funct. Mater. Lett. – 2014. – 7, N 4, art. 1450040.
11. Mu Y., Guo J., Liang B., Wang Q. Rapid fabrication of the Ti3SiC2 bonded diamond compos-
ite by spark plasma sintering // Int. J. Refract. Met. Hard Mater. – 2011. – 13. – P. 397–400.
12. Mu Y.-C., Han J.-X., Liu J.-L. et al. Microstructure of Ti3SiC2/diamond composite materials
prepared by hot-pressing // Fenmo Yejin Cailiao Kexue yu Gongcheng/Mater. Sci. Eng. Pow-
der Metal. – 2015. – 1. – P. 139–143.
13. Rampai T., Lang C. I., Sigalas I. Investigation of MAX phase/c-BN composites // Ceram. Int.
– 2013. – 39, N 5. – P. 4739–4748.
14. Zhou A., Li Z., Li L. et al. Preparation and microstructure of Ti3SiC2 bonded cubic boron
nitride superhard composites // Kuei Suan Jen Hsueh Pao/J. Chinese Ceram. Soc. – 2014. –
42, N 2. – P. 220–224.
15. Qin J., He D. Phase stability of Ti3SiC2 at high pressure and high temperature // Ceram. Int. –
2013. – 39, N 8. – P. 9361–9367.
16. Advances in Ceramic Matrix Composites: Woodhead Publishing Series in Composites Sci-
ence and Enginee / Ed. I. M. Low. – Elsevier Science & Technology, 2014. – 734 p.
17. Khvostantsev L. G., Slesarev V. N. High pressure apparatuses of a high volume for physical
investigations // Physics-Uspekhi. – 2008. – 178, N 10. – P. 1099–1104.
18. Taniguchi T., Akaishi M., Yamaoka S. Mechanical properties of polycrystalline line translu-
cent cubic boron nitride as characterized by the Vickers indentation method // J. Am. Ceram.
Soc. – 1996. – 79, N 2. – P. 547–549.
Received 06.03.17
<<
/ASCII85EncodePages false
/AllowTransparency false
/AutoPositionEPSFiles true
/AutoRotatePages /None
/Binding /Left
/CalGrayProfile (Dot Gain 20%)
/CalRGBProfile (sRGB IEC61966-2.1)
/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
/sRGBProfile (sRGB IEC61966-2.1)
/CannotEmbedFontPolicy /Warning
/CompatibilityLevel 1.4
/CompressObjects /Off
/CompressPages true
/ConvertImagesToIndexed true
/PassThroughJPEGImages true
/CreateJobTicket false
/DefaultRenderingIntent /Default
/DetectBlends true
/DetectCurves 0.1000
/ColorConversionStrategy /LeaveColorUnchanged
/DoThumbnails true
/EmbedAllFonts true
/EmbedOpenType false
/ParseICCProfilesInComments true
/EmbedJobOptions true
/DSCReportingLevel 0
/EmitDSCWarnings false
/EndPage -1
/ImageMemory 1048576
/LockDistillerParams true
/MaxSubsetPct 100
/Optimize false
/OPM 1
/ParseDSCComments true
/ParseDSCCommentsForDocInfo true
/PreserveCopyPage true
/PreserveDICMYKValues true
/PreserveEPSInfo true
/PreserveFlatness true
/PreserveHalftoneInfo false
/PreserveOPIComments false
/PreserveOverprintSettings true
/StartPage 1
/SubsetFonts true
/TransferFunctionInfo /Remove
/UCRandBGInfo /Preserve
/UsePrologue false
/ColorSettingsFile ()
/AlwaysEmbed [ true
]
/NeverEmbed [ true
]
/AntiAliasColorImages false
/CropColorImages true
/ColorImageMinResolution 300
/ColorImageMinResolutionPolicy /OK
/DownsampleColorImages false
/ColorImageDownsampleType /Bicubic
/ColorImageResolution 300
/ColorImageDepth 8
/ColorImageMinDownsampleDepth 1
/ColorImageDownsampleThreshold 1.50000
/EncodeColorImages true
/ColorImageFilter /FlateEncode
/AutoFilterColorImages false
/ColorImageAutoFilterStrategy /JPEG
/ColorACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/ColorImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000ColorACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000ColorImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasGrayImages false
/CropGrayImages true
/GrayImageMinResolution 300
/GrayImageMinResolutionPolicy /OK
/DownsampleGrayImages false
/GrayImageDownsampleType /Bicubic
/GrayImageResolution 300
/GrayImageDepth 8
/GrayImageMinDownsampleDepth 2
/GrayImageDownsampleThreshold 1.50000
/EncodeGrayImages true
/GrayImageFilter /FlateEncode
/AutoFilterGrayImages false
/GrayImageAutoFilterStrategy /JPEG
/GrayACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/GrayImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000GrayACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000GrayImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasMonoImages false
/CropMonoImages true
/MonoImageMinResolution 1200
/MonoImageMinResolutionPolicy /OK
/DownsampleMonoImages false
/MonoImageDownsampleType /Bicubic
/MonoImageResolution 1200
/MonoImageDepth -1
/MonoImageDownsampleThreshold 1.50000
/EncodeMonoImages true
/MonoImageFilter /CCITTFaxEncode
/MonoImageDict <<
/K -1
>>
/AllowPSXObjects false
/CheckCompliance [
/None
]
/PDFX1aCheck false
/PDFX3Check false
/PDFXCompliantPDFOnly false
/PDFXNoTrimBoxError true
/PDFXTrimBoxToMediaBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXSetBleedBoxToMediaBox true
/PDFXBleedBoxToTrimBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXOutputIntentProfile (None)
/PDFXOutputConditionIdentifier ()
/PDFXOutputCondition ()
/PDFXRegistryName ()
/PDFXTrapped /False
/CreateJDFFile false
/Description <<
/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
/ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
/JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
/ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
/RUS ()
>>
/Namespace [
(Adobe)
(Common)
(1.0)
]
/OtherNamespaces [
<<
/AsReaderSpreads false
/CropImagesToFrames true
/ErrorControl /WarnAndContinue
/FlattenerIgnoreSpreadOverrides false
/IncludeGuidesGrids false
/IncludeNonPrinting false
/IncludeSlug false
/Namespace [
(Adobe)
(InDesign)
(4.0)
]
/OmitPlacedBitmaps false
/OmitPlacedEPS false
/OmitPlacedPDF false
/SimulateOverprint /Legacy
>>
<<
/AddBleedMarks false
/AddColorBars false
/AddCropMarks false
/AddPageInfo false
/AddRegMarks false
/ConvertColors /NoConversion
/DestinationProfileName ()
/DestinationProfileSelector /NA
/Downsample16BitImages true
/FlattenerPreset <<
/PresetSelector /MediumResolution
>>
/FormElements false
/GenerateStructure true
/IncludeBookmarks false
/IncludeHyperlinks false
/IncludeInteractive false
/IncludeLayers false
/IncludeProfiles true
/MultimediaHandling /UseObjectSettings
/Namespace [
(Adobe)
(CreativeSuite)
(2.0)
]
/PDFXOutputIntentProfileSelector /NA
/PreserveEditing true
/UntaggedCMYKHandling /LeaveUntagged
/UntaggedRGBHandling /LeaveUntagged
/UseDocumentBleed false
>>
]
>> setdistillerparams
<<
/HWResolution [2400 2400]
/PageSize [612.000 792.000]
>> setpagedevice
|