MAX-phase coatings produced by thermal spraying
This paper presents a comparative study on the Ti₂AlC coatings produced by different thermal spray methods, as Ti₂AlC is one of the most studied materials from the MAX-phase family. Представлено порівняльне дослідження покриттів Ti₂AlC, отриманих різними методами термічного розпилення, оскільки Ti₂A...
Збережено в:
| Опубліковано в: : | Сверхтвердые материалы |
|---|---|
| Дата: | 2017 |
| Автори: | , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України
2017
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/160157 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | MAX-phase coatings produced by thermal spraying / N. Markocsan, D. Manitsas, J. Jiang, S. Björklund // Сверхтвердые материалы. — 2017. — № 5. — С. 73-85. — Бібліогр.: 41 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-160157 |
|---|---|
| record_format |
dspace |
| spelling |
Markocsan, N. Manitsas, D. Jiang, J. Björklund S. 2019-10-24T20:26:57Z 2019-10-24T20:26:57Z 2017 MAX-phase coatings produced by thermal spraying / N. Markocsan, D. Manitsas, J. Jiang, S. Björklund // Сверхтвердые материалы. — 2017. — № 5. — С. 73-85. — Бібліогр.: 41 назв. — англ. 0203-3119 https://nasplib.isofts.kiev.ua/handle/123456789/160157 621.793 This paper presents a comparative study on the Ti₂AlC coatings produced by different thermal spray methods, as Ti₂AlC is one of the most studied materials from the MAX-phase family. Представлено порівняльне дослідження покриттів Ti₂AlC, отриманих різними методами термічного розпилення, оскільки Ti₂AlC є одним з найбільш вивчених матеріалів з сімейства фаз MAX. Представлено сравнительное исследование покрытий Ti₂AlC, полученных различными методами термического распыления, поскольку Ti₂AlC является одним из наиболее изученных материалов из семейства MAX-фаз. The authors would like to thank Richard Trache for carrying out the XRD tests. Thanks to Professor Dimitris Anagnostopoulos from University of Ioannina for his help in processing the XRD analysis. en Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України Сверхтвердые материалы Получение, структура, свойства MAX-phase coatings produced by thermal spraying Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
MAX-phase coatings produced by thermal spraying |
| spellingShingle |
MAX-phase coatings produced by thermal spraying Markocsan, N. Manitsas, D. Jiang, J. Björklund S. Получение, структура, свойства |
| title_short |
MAX-phase coatings produced by thermal spraying |
| title_full |
MAX-phase coatings produced by thermal spraying |
| title_fullStr |
MAX-phase coatings produced by thermal spraying |
| title_full_unstemmed |
MAX-phase coatings produced by thermal spraying |
| title_sort |
max-phase coatings produced by thermal spraying |
| author |
Markocsan, N. Manitsas, D. Jiang, J. Björklund S. |
| author_facet |
Markocsan, N. Manitsas, D. Jiang, J. Björklund S. |
| topic |
Получение, структура, свойства |
| topic_facet |
Получение, структура, свойства |
| publishDate |
2017 |
| language |
English |
| container_title |
Сверхтвердые материалы |
| publisher |
Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України |
| format |
Article |
| description |
This paper presents a comparative study on the Ti₂AlC coatings produced by different thermal spray methods, as Ti₂AlC is one of the most studied materials from the MAX-phase family.
Представлено порівняльне дослідження покриттів Ti₂AlC, отриманих різними методами термічного розпилення, оскільки Ti₂AlC є одним з найбільш вивчених матеріалів з сімейства фаз MAX.
Представлено сравнительное исследование покрытий Ti₂AlC, полученных различными методами термического распыления, поскольку Ti₂AlC является одним из наиболее изученных материалов из семейства MAX-фаз.
|
| issn |
0203-3119 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/160157 |
| citation_txt |
MAX-phase coatings produced by thermal spraying / N. Markocsan, D. Manitsas, J. Jiang, S. Björklund // Сверхтвердые материалы. — 2017. — № 5. — С. 73-85. — Бібліогр.: 41 назв. — англ. |
| work_keys_str_mv |
AT markocsann maxphasecoatingsproducedbythermalspraying AT manitsasd maxphasecoatingsproducedbythermalspraying AT jiangj maxphasecoatingsproducedbythermalspraying AT bjorklunds maxphasecoatingsproducedbythermalspraying |
| first_indexed |
2025-11-26T13:25:03Z |
| last_indexed |
2025-11-26T13:25:03Z |
| _version_ |
1850622720216137728 |
| fulltext |
ISSN 0203-3119. Сверхтвердые материалы, 2017, № 5 73
UDC 621.793
N. Markocsan, D. Manitsas, J. Jiang, S. Björklund
Department of Engineering Science, University West,
Trollhättan, Sweden
*nicolaie.markocsan@hv.se
MAX-phase coatings produced by thermal
spraying
This paper presents a comparative study on the Ti2AlC coatings pro-
duced by different thermal spray methods, as Ti2AlC is one of the most studied materi-
als from the MAX-phase family. Microstructural analysis of coatings produced by High
Velocity Air Fuel (HVAF), Cold Spray and High Velocity Oxygen Fuel (HVOF) has
been carried out by means of the scanning electron microscopy equipped with an en-
ergy dispersive spectrometer (EDS). The volume fraction of porosity was determined
using the ASTM standard E562. The phase characterization of the as-received powder
and as-sprayed coatings was conducted using the X-ray diffraction with CrKα radia-
tion. Impact of the spray parameters on the porosity and the mechanical properties of
the coatings are discussed. The results show that the spraying temperature and velocity
plays a crucial role in coatings characteristics.
Keywords: MAX-phase, high velocity air fuel (HVAF), high velocity
oxygen fuel (HVOF), Cold spray, scanning electron microscopy (SEM).
INTRODUCTION
The MAX-phase materials are a group of ternary carbides and
nitrides with nano-layered structures [1]. MAX is an abbreviation of the general
formula: Mn+1AXn where M is an early transition metal, A is an A-group element
(most elements are of 13 and 14 groups), X is either C and/or N and n = 1, 2, 3.
These materials have a hexagonal crystal structures with near close packed layers
of the M elements interleaved with square planar slabs of pure A elements. The
X atoms fill the octahedral sites between the M atoms [2]. The A elements are
located at the centre of trigonal prisms that are larger than the octahedral X sites
[2]. These phases with space group of P63 mmc have two formulas units per the
unit cell, where Mn+1Xn layers are interleaved with pure A group layers [3].
There are roughly fifty M2AX [4], five M3AX2 [5] and seven M4AX3 [6] phases
identified so far.
The Mn+1AXn phases are usually classified into three groups based on their n
values, i.e., ‘211’ for n = 1, ‘312’ for n = 2, etc. [7]. In addition, there is also a
category of ‘intergrown phases’ such as the ‘523’ and ‘725’ phases, with alterna-
tive half unit cell layers of ‘211’ and ‘312’ (=‘523’) or ‘312’ and ‘413’ (=‘725’)
[7]. The Ti–Al–C system is the most important and stable set of MAX phases due
to excellent oxidation resistance at temperatures above 1100 °C [2]. An insertion of
Al monolayers into a face-centred cubic TiC matrix implies that the strong Ti–C
bonds are broken up and replaced by weaker Ti–Al bonds with a cost of energy
forming a hexagonal close-packed Ti2AlC [2, 8].
Ti2AlC and Ti3AlC2 are two of the most lightweight and oxidation-resistant
MAX phases [9]. Moreover, the accessibility and relatively low cost of their raw
© N. MARKOCSAN, D. MANITSAS, J. JIANG, S. BJÖRKLUND, 2017
www.ism.kiev.ua/stm 74
materials render them as the most promising for production up-scaling and indus-
trialization. In addition to Ti2AlC, henceforth referred to as 211, and Ti3AlC2,
henceforth referred to as 312, there is also a Ti5Al2C3 or 523 phase, which is in the
category of higher order MAX phases [10]. The combination of both metallic and
ceramic properties of Ti2AlC originates partially from the metallic nature of the
bonding and partially from their layered structure. This unique combination makes
them promising for many applications such as electrical heating elements [11], gas
burner nozzles in corrosive environments, high temperature bearings [12], cladding
materials in lead-cooled fast-breeder nuclear reactors [13], high temperature elec-
trodes [14], etc. Due to their high temperature properties and the stability of ther-
mally grown aluminium oxide, MAX phases are also considered as an alternative
to MCrAlY-coatings for applications in hot gas corrosion protection, e.g., as coat-
ing for turbine blades [15].
Physical vapour deposition and chemical vapour deposition are apart from sol-
id-state reaction synthesis, the most used techniques for thin-film deposition of
MAX phase materials [16]. Sputtering from M, A, and graphite targets is the com-
mon method for laboratory scale synthesis in order to produce MAX carbides,
including Ti2AlC and Ti3AlC2 [17]. Also, Ti2AlC has been deposited by sputtering
from compound targets [18]. Moreover, Rosen et al. [19] have reported synthesis
of epitaxial Ti2AlC using a pulsed cathodic-arc setup from elemental Ti, Al, and C
cathodes at a substrate temperature of 900 °C. In order to step forward toward tick-
er MAX-phase coatings, alternative coating processes have been considered.
The thermal spray methods are potential processing approaches to fabricate
Ti2AlC coatings on large engineering components [15]. Several attempts have been
made to process Ti2AlC coatings by high velocity oxy-fuel (HVOF) [20–22] and
cold spraying (CS) [19] techniques. In the CS process the in-flight particle is not
melted so the material phase and chemical composition can be preserved [23].
Moreover, the low temperature of the process enables the deposition of coatings
with low and/or compressive residual stress [24], low porosity, and low-oxygen
content [25]. However, there are two major concerns about cold spray of MAX
phase coatings: the bond strength between the coating and the substrate, and the
coating thickness [26]. A coating is reliable and functional only when it has a good
adhesion to its substrate [26]. The bonding of particles in cold spray is presumed to
be the result of extensive plastic deformation and related phenomena at the inter-
face, such as spray jet formation and spray splats interlocking. As MAX phases are
hard materials, the sprayed powder particles deform very little under the impact
with the substrate and adhere poorly; hence it is difficult to deposit coatings thicker
than 100 µm [27].
HVOF spraying gives the possibility to make denser and less oxidized coatings
compared to the plasma spraying, though due to a rather high flame temperature
(i.e., 2600–3100 °C) it is limited when it is used for spraying materials which are
sensitive to higher temperatures, i.e., depletion, oxidation, decomposition. Prelimi-
nary attempts showed that quite a high amount of the sprayed MAX material disso-
ciate due to the high spraying temperature when sprayed by HVOF and thus the
excellent properties of these materials are entirely preserved [20–22].
A HVAF (High Velocity Air Fuel) system uses gas or liquid fuel and com-
pressed air as combustion gases which leads to significantly lower flame tempera-
tures than in the HVOF process (i.e., 1400–1800 °C) [28]. HVAF uses also a high-
er spraying velocity, which in turn leads to denser coatings, compressive stresses in
coatings, and less degree of the oxidation [29]. Therefore, the HVAF process can
be considered the link between the high velocity combustion spray processes and
ISSN 0203-3119. Сверхтвердые материалы, 2017, № 5 75
cold gas spraying while retaining the capability to produce superior and thicker
coatings [30]. In addition, HVAF is a less expensive spraying process, hence it is
industrially attractive and easy to scale-up for mass production [31]. To the best of
the authors, no previous works on HVAF spraying of MAX phase materials were
reported.
The objective of this study was focused on deposition and investigation of thick
Ti2AlC coatings by high velocity oxy fuel, high velocity air fuel, and cold spraying
processes. Special emphasis was on the HVAF coatings as this process was firstly
used for spraying the MAX materials.
EXPERIMENTAL PROCEDURE
Materials
The feedstock material used in this study was a Ti2AlC powder (MAXTHAL
211®) produced by Kanthal AB. The MAXTHALL 211® is classified as a machi-
nable engineering ceramic. The powder was manufactured from crushed and sifted
Ti2AlC bulk material sieved down to ~ 230 mesh. The chemical composition of the
powders is 50.1 % Ti, 25.5 % Al, 23.5 % C, 0.3 % Si, 0.6 % O and 0.05 % Fe.
Stainless steel coupons of 60×19×1.5 mm (AMS 5604, US standard) were used
as substrate specimens.
Samples production
Three spraying methods have been employed to produce the coatings:
a) HVOF spraying, done with a Diamond JetTM 2600 gun equipped with a Di-
amond JetTM 7–8 nozzle (Sulzer Metco) and air-cooled combustion chamber.
A gas mixture of H2/O2 was used as the spraying gas. The samples were cooled
during spraying with compressed air.
b) HVAF spraying, performed with a M3 spray gun equipped with a 4L2 nozzle
(UniqueCoat Technologies), using a supersonic air fuel technology. A reactive
mixture of air and propylene was used as the spraying gas.
c) CS performed with a CGT Kinetiks 4000/47 cold spray system using ni-
trogen as the process gas and a PF4000 (CGT, Ampfing, Germany) powder
feeder.
The spraying parameters used for the three processes are shown in Table 1. Pre-
liminary parameters optimisations were done for the HVOF and CS processes.
Table 1. Parameters of thermal spray processes
Coating code HVOF HVAF CS
Gun DJ 2600 (HVOF) M3 (HVAF) CGT Kinetiks 4000/47
Gas Fuel/oxygen
ratio
0.3
Propylene pressure:
0.68 MPa
Air pressure: 0.74 MPa
Nitrogen pressure:
3.7 MPa
Powder feed rate, g/min 21–22 18–22 5–6
Carrier gas flow, L/min 953 20 60
Spraying distance, mm 230 305 20
Number of torch passing 10 12 3
The spray parameters used in the HVAF spray trial were standard spray pa-
rameters (given by the equipment manufacturer) for spraying cermet materials.
www.ism.kiev.ua/stm 76
SAMPLES CHARACTERIZATION
Metallographic preparation
The samples were cut with a Struers Secotom-10 cutting system using water
based lubricant and a diamond cut-off wheel. Hot compression mounting (Simpli-
Met 2000) was used for metallographic preparation. The resin used for SEM inves-
tigations was KonductoMet 20-3375-400. The samples were polished in 4-steps
using a Buehler Hercules H disk and diamond slurries. After polishing the coupons
were rinsed with water, then with methanol and dried with hot air.
Microstructure investigation
The morphology of the powder and coatings microstructure were examined by
means of a Scanning Electron Microscope (Hitachi TM3000) with acceleration
voltage 15 kV, equipped with Energy Dispersive X-ray Spectrometer (EDS). Ob-
servations were carried out on metallographic samples. Backscattered electron
(BSE) images were obtained to reveal the different phases and the EDS analysis
was performed on the individual phases to obtain their elemental composition. The
BSE images and EDS spectra were taken with primary electron beam energy of
15 keV, and of 0.5 mm depth focus. At this accelerating voltage, SEM/EDS analy-
ses typically include information from a pear-shaped interaction volume of at least
1 μm3. It should be emphasized that the atomic percent of C as determined by EDS
is only approximate. When analyzing the MAX phase via X-ray mapping, only
larger particles were analyzed with high magnification in order to minimize an
influence of the composition from the surrounding matrix. The EDS analysis of
five points gives an estimation of the composition of each phase.
Porosity evaluation
The porosity of the coatings was evaluated according to the ASTM E562-08 by
a visual point counting on 40 evenly distributed fields with 100 points-layer each,
across the whole cross-section of the sample. The investigations were performed
on the SEM micrographs.
Phase analysis
The phase characterization of the as-received powder and the as-sprayed coat-
ings was carried out using an X-ray diffractometer with CrKα radiation (wave-
length = 0.2291 nm) at 35 kV and 30 mA. The 2θ range was varied from 30° to
150° with a step size of 0.04° and a step time of 16 s. It should be pointed out that
in our study the XRD patterns were plotted according to CuKα radiation.
Microhardness evaluation
The micro-Vickers hardness measurements were carried out with a Shimadzu
Microhardness Tester on the polished cross section of the samples according to the
ASTM E384-10 at loads of 100g (980.7 mN) and 500g (4.903 N) and dwell time of
15 s. HV 0.1 and HV 0.5 were calculated from averaging series of 20 indentations.
The distance between the centres of the two indentations was at least 4 times the
diameter of the indentation. Also the distance from the centre of the hardness in-
dentation to the edge and the substrate in the test was at least 3 times the diameter
of the indentation. A series of 20 indentations were made on each coating, which
were distributed evenly in a half circle of the entire test panel.
Roughness measurement
The surface roughness (Ra) of the as-sprayed coatings were measured with a
Mitutoyo (SURFTEST 301) roughness tester.
ISSN 0203-3119. Сверхтвердые материалы, 2017, № 5 77
RESULTS AND DISCUSSION
Powder morphology
Figure 1 shows the morphology of the MAXTHAL® 211 powder used in this
study. The Ti2AlC powder particles are flake-like and irregular. Also, the non-
uniform shape and size of the powder are obvious. The results of the morphologi-
cal investigation are consistent with similar works done previously [6, 20, 22]. The
Ti2AlC walls have both tilt and twist components. The distinctive layered structure
can be easily seen, as well as the kinks at the fracture surface. The images reveal
that the powder consists of three characteristic types of grains, or more specifically,
conglomerates assembled from micro-scale grains, flake-like grains with cleavage
steps and kinked laminates.
Kinked laminate
Conglomerat
Kink bands
Delamination
Cleavage steps
Fig. 1. Powder morphology; of the MAXTHAL 211® as SEM-BSE micrograph; Ti2AlC material
is nano-laminate, assemblage of microscopic layers analogous to the flaky phyllo dough.
Cleavage steps and dislocations are typical for the (000l) basal planes, with l =
odd [14]. As showed by Guo et al. [32], the dislocations arrange themselves either
in arrays (pile-ups) on the same basal planes, or in walls (low- and high-angle grain
boundaries) normal to the basal planes, as they are confined to the basal planes.
Kink banks can also be seen in Fig. 1. As found by Hess et al. [33], kink bands
form in a crystalline solid when dislocations form and move in opposite directions
(small T symbols in the diagram), settling into a configuration with well-defined
kink boundaries. Note that kink bands are expected only in crystals that do not
twin, such as hexagonal metals or alloys having an axial c/a ratio greater than
∼ 1.73 [34]. Each kink band is composed by pairs of dislocations with opposite
Burgers vector organized in walls perpendicular to the basal plane [35].
Coatings microstructure
The microstructure images of the as-sprayed coatings, sprayed by different
techniques, are shown in Fig. 2 and marked as follows a–c HVAF, d–f HVOF and
g–i CS. The HVAF coating revealed a well-bonded and homogeneous structure,
where the sprayed layers are almost indistinguishable. This might be attributed to
the densification effect caused by the peening of the particles impacting the sub-
strate/coating with high velocity. Figure 2, a is a cross-sectional SEM-BSE image
of a ∼ 310 μm thick Ti2AlC coating on stainless steel substrate. The HVAF coating
has a top surface roughness (Ra) of 8 μm (Table 2). The interface between the
HVAF coating and substrate is compact with no obvious voids or delaminations.
The HVAF micrographs reveal two types of regions in the coating, one containing
larger grains and the other consisting of very small grains. Additionally, the small
grains are embedded in a dark-grey appearing phase. These distinguished regions
can be a result of the relatively large powder size interval, so that both very small
and large particles form the coating. These types of features were observed on the
HVOF coatings too and can be more clearly seen in Fig. 3. In Fig. 2, a it can be
www.ism.kiev.ua/stm 78
observed also an embedded grit residue on the substrate surface, which is an alu-
mina particle with sharp, angular cutting edges that remain stuck in the substrate’s
asperities from the grit blasting process.
Al
2
O
3
Intersplat porosity
Intersplat porosity
Unmelted powder
a b c
Intersplat porosity
Intersplat porosity
d e f
Unmelted powder grain Crack
Intersplat porosity
g h i
Fig. 2. SEM-BSE micrographs of the cross section of HVAF (a–c), HVOF(d–f) and CS (g–i)
MAX phase coatings.
Table 2: Roughness measurements results
Coating type Surface roughness Ra, μm
HVAF 8±0.8
HVOF 6±0.5
CS 5±0.5
Figure 2, d shows a cross-sectional SEM-BSE image of ∼ 210 μm thick HVOF
coating. The HVOF coating has a top surface roughness (Ra) of 6 μm (see Ta-
ble 2). Lower roughness of a coating sprayed with same powder but by different
thermal spray process may indicate a larger melting rate of the particles so that
they become more “flattened” under the impact to substrate. High melting rate is
not desired for MAX-phase materials as it can lead to a higher degree of dissocia-
tion during spraying and thus new phases can appear in the coating.
Both HVAF and HVOF coatings are relatively dense, showing a specific lay-
ered splat structure. However, unmelted powder grains of Ti2AlC are also embed-
ded in the coatings.
ISSN 0203-3119. Сверхтвердые материалы, 2017, № 5 79
Intralamellar crack
Intralamellar crack
a b
Fig. 3. Specific microstructural features of HVAF (a) and HVOF(b) MAX phase coatings.
The coating deposited by the CS process (see Figs. 2, g–i) exhibits a three-
layered structure, since three single layers stacked one upon the other. It is a
~ 55 μm thick coating with bad adherence to its substrate as large disbonded areas
were observed. The CS layers displayed a bad inter-locking and they are clearly
separated by continuous transversal cracks. This indicates a weak cohesion of the
coating and consequently difficulty to increase the coating’s thickness. As ex-
pected, it is visible a remarkable plastic deformation of the sprayed particles, which
is a typical feature of the cold spray deposition.
The roughness of the CS coatings was Ra 5 µm which, if compared to the other
two coatings, may indicate either a better flattening effect of the particle (better
than those sprayed by HVOF and almost same with those sprayed by HVAF) or
that the big particles have not adhered but only the very small ones.
As the coatings could not be sprayed thicker than 55 µm and even so with large
disbonding areas, it can be concluded that Ti2AlC powder is usable in a very lim-
ited scale for cold spray deposition.
The overall porosity levels that were measured on coatings are shown in Fig. 4.
The porosity of the HVAF sprayed coating was found to be around 2 vol %, on the
other hand the porosity of coating produced by the HVOF process was higher,
around 6 vol %. Because of the very small thickness of the CS coatings and also
because of their large cracks and large disbonded areas, the porosity measurement
routine used for HVAF and HVOF coatings was not possible to be used for CS
coatings. However, using an image analysis method, that allows measuring poros-
ity from coating’s microstructure, it was found out that the CS coatings porosity
values are between those of HVAF and HVOF, i.e., around 3 vol %. The scatter in
the porosity results on HVAF, HVOF, and CS coatings is rather small, the standard
deviation values for each of the measurements varies between 0.3, 1 and 0.3 re-
spectively.
The coatings presented a bimodal porosity. One type of pores of the bigger size
consisted of globular voids and cracks formed at the splats interfaces and probably
formed by a partial overlapping of two consecutive splats so that gaps remained
between them, which in this case are the remaining pores in the coating (see
Fig. 2). Intra-lamellar cracks were observed as well (see Fig. 3). Cracks could form
either under the impact and solidification of the particle or after spraying when the
substrate cooled down to room temperature so that the mismatch between the
thermal expansions of the two materials was high enough to induce cracks in the
coating. The found pores of the second type are of a very low scale and are located
either at the interface of the very small particles or within the splats. This type of
www.ism.kiev.ua/stm 80
porosity mostly comes from the powder (i.e., from the manufacturing process);
(see Fig. 1) and lack of a good compacting of the coatings under spraying (i.e., the
kinetic energy and/or softening degree of the particles are not high enough to de-
form/flatten well the particle under impact hence the pores preserved in the particle
are new and formed at the interface). Nano-laminate and kink-band type small
cracks (delaminations) can be seen in all coatings investigated in this study. As
regards bigger (macro) cracks, it can be observed that the HVOF coating has a
higher density of cracks compared to HVAF coatings (see Fig. 2). However both
HVOF and HVAF coatings have significantly lower amount of cracks than the CS
coatings.
CS
0 1 2 3 4 5 6 7 8
Porosity, vol %
HVOF
HVAF
Fig. 4. Porosity values of the sprayed coating.
The more porous microstructure of the HVOF process has resulted in lower mi-
crohardness of the coatings (Fig. 5). The lower hardness values can reflect also the
higher decomposition ratio of the particles in the HVOF coatings, i.e., the new
phases have lower hardness values than Ti2AlC. The hardness measurement could
not be carried out on the cold sprayed samples due to the low thickness and low
adhesion of the coatings.
0 200 400 600 800 H
V
HVOF
HVAF
H
V
0.5
H
V
0.1
Fig. 5. Microhardness results.
The melting ratio and velocity of the particles at the point of impact on the sub-
strate are the variables that directly influence the coating microstructure and poros-
ity, which, in turn, determine coating strength and hardness.
Figure 6 shows the distribution of elements by the EDS mapping. Quantitive
EDS analysis indicates that the light-grey regions correspond to small islands rich
in Ti. The map together with the point analysis reveals that thin Al-rich zones sur-
round the large Ti-rich grains as well as the small-grained regions. The darker grey,
minority phase, is an Al–Ti intermetallic. At almost 2, the Al: Ti ratio suggests that
ISSN 0203-3119. Сверхтвердые материалы, 2017, № 5 81
its chemistry is TiAl2. Futheremore, it was found that the HVAF sprayed coating
has the highest Ti content (the light grey phase) comparing to HVOF and Cold
Spray deposition. It should be pointed out that the higher content of light elements
in coatings gives the darker contrast in SEM-BSE image.
Fig. 6. EDS Map analysis, SEM image of HVAF sprayed MAX phase coating.
In an attempt to find XRD evidence for the Ti–Al–C system, a XRD scan was
carried out on coatings investigated in this study as well as on the feedstock pow-
der. The XRD pattern of the feedstock powder shows the characteristic peaks of
Ti2AlC phase (Table 3). For comparison purposes in Table 3 are presented both the
measured values (using CrKα radiation sources) and the corresponding CuKα val-
ues taken from the literature [26]. Other phases such as TiC and TixAlx are also
present. Previous studies have shown that TiC and TiAl can be either the interme-
diate phases during the synthesis of Ti2AlC or the impurities of the Ti2AlC ceramic
[26, 36–39].
Table 3. Miller indices, CrKα and CuKα radiation peaks
Peak (2θ-degree), CrKα 50,49 51,52 54,72 60,04 60,63 63,88 67 79,04 82,96 89,64 97,04
Miller indices 311 200 111 311 311 111 220 311 200 211 311
Phase Ti3AlC2 TiC TiC Ti2AlC Ti3AlC2 TiC TixAlx Ti2AlC TiC Ti2AlC Ti2AlC
When the XRD diffractograms of HVAF, HVOF, and CS deposited MAX
phase coatings are compared (Fig. 7), it is obvious that diminution of the peak
intensities belong to Ti2AlC, peak broadening, and an emergence of peaks belong-
ing to Ti3AlC2 and TiC occurred, when compared to the un-sprayed powder. Addi-
tionally, there are peaks corresponding to Ti2AlC, Ti3AlC, and titanium aluminides
TixAlx. If compared the coatings with the as-received powder, the X-ray diffracto-
grams show stronger intensities of the undesired polycrystalline TiC in two peaks
54.72° and 63.88°. However, the polycrystalline TiC is more pronounced in the
samples produced by the HVOF and CS processes than in those produced by the
HVAF. It is an interesting result as the spray temperature of the HVAF process is,
in terms of particle’s velocity and temperature, between HVOF (that is hotter and
slower) and CS (that is colder and faster). This may show that not only particle
temperature is important during spraying (which can obviously contribute to a
phase alteration) but also the particle’s velocity which can have a similar influence.
www.ism.kiev.ua/stm 82
More experimental work is needed to completely elucidate and understand the
phenomena behind these results.
2θ, deg
1
In
te
ns
it
y 2
3
4
0
5000
10000
15000
20000
Fig. 7. XRD patterns of feedstock powder and coating: 1 – Ti2AlC_CS; 2 – Ti2AlC_HVOF; 3 –
Ti2AlC_HVAF; 4 – Ti2AlC_Powder.
According to the discussion above, it can be said that during the spray deposi-
tion processes the Ti2AlC powder decomposes. The microstructure of the coatings
is built up of layers of unmelted and partially melted, decomposed Ti2AlC grains
embedded in a mixture of TixAlx and TiC grains. As clarified by Sonestedt et al.
[40] it appears that during the spraying process, the outer part of the grains melt or
partially melt, and oxidize while the interior of the grains start to suffer from out-
ward diffusion of aluminium. Figure 2 shows that the Ti2AlC grain corresponds to
the unmelted core of the powder grains while the alleged outward diffusion of Al is
result in an Al rich phase surrounding this grain. The decomposition of Ti2AlC by
Al outward diffusion is also supported by the fact that in this structure the Ti–Al
bonding is weaker than that between Ti and C and that the decomposition of close-
ly related structure of Ti3AlC2 is triggered by deintercalation of Al [41]. The prom-
ising results shown by the HVAF samples can be an effect of the beneficial combi-
nation of the low heat and particle velocity that the HVAF process possesses so
that the transferred thermal energy is just enough to soften the particle while the
high velocity of the particle makes it to impact strongly the substrate and give a
good cohesion and adhesion to the coating. However, more experimental work
needs to be done in order to optimise the effect of the two energies on the in-flight
particle so that the TiC phase apparition is even more restrained.
CONCLUSIONS
An experimental study has been carried out on Ti2AlC (MAX-phase) coatings
produced by 3 thermal spray methods, namely, HVOF, HVAF, and CS. While the
initial proportion of the MAX-phase is difficult to be retained in the sprayed coat-
ings, all the investigated methods showed both advantages and disadvantages. The
CS spraying method shows limitation in producing highly cohesive and thick coat-
ings. This issue can be solved by using thermal spray methods such as HVOF and
HVAF. However, the high temperature that is common for these processes is a
major obstacle in preserving the MAX-phases in the coating as it dissociate at ele-
vated temperature. Despite the obvious difficulties in producing MAX-phase coat-
ings by thermal spray methods the HVAF process is the most promising one. It
seems that the good balance between the low heat transfer and high velocity of the
particle makes possible to produce thicker coatings, which also shows a lower
thermal degradation than the HVOF samples, so that the desired Ti2AlC phase can
ISSN 0203-3119. Сверхтвердые материалы, 2017, № 5 83
more successfully preserved. The large interval of setting the spray temperature
gives the premises that further spray optimization work can result in highly func-
tional HVAF coatings with high content of MAX phases.
ACKNOWLEDGMENTS
The authors would like to thank Richard Trache for carrying out the XRD tests.
Thanks to Professor Dimitris Anagnostopoulos from University of Ioannina for his
help in processing the XRD analysis.
Представлено порівняльне дослідження покриттів Ti2AlC, отриманих
різними методами термічного розпилення, оскільки Ti2AlC є одним з найбільш вивчених
матеріалів з сімейства фаз MAX. Мікроструктурний аналіз покриттів, що вироблено
високошвидкісним відпалом на повітрі (HVAF), холодним розпиленням та високошвидкіс-
ним відпалом у середовищі кисню (HVOF), проведено за допомогою скануючого електрон-
ного мікроскопа, оснащеного енергодисперсійним спектрометром (EDS). Об’ємну частку
пористості визначали за стандартом ASTM E562. Фазовий склад вихідних порошків і
покриттів, що отримано розпиленням, проводили за допомогою рентгенівської дифракції
з CrKα-випромінюванням. Зроблено аналіз впливу параметрів розпилення на пористість
та механічні властивості покриттів. Результати показали, що температура і швид-
кість розпилення відіграють вирішальну роль у характеристиках покриттів.
Ключові слова: MAX-фаза, високошвидкісний відпал на повітрі (HVAF),
високошвидкісний відпал у середовищі кисню (HVOF), холодне розпилення, скануюча елек-
тронна мікроскопія (SEM).
Представлено сравнительное исследование покрытий Ti2AlC, получен-
ных различными методами термического распыления, поскольку Ti2AlC является одним из
наиболее изученных материалов из семейства MAX-фаз. Микроструктурный анализ по-
крытий, полученных высокоскоростным отжигом на воздухе (HVAF), холодным напыле-
нием и высокоскоростным отжигом в среде кислорода (HVOF), проводили с помощью
сканирующего электронного микроскопа, оборудованного энергодисперсионным спектро-
метром (EDS). Объемную долю пористости определяли по стандарту ASTM E562. Фазо-
вый состав исходных порошков и покрытий, полученных распылением, проводили с ис-
пользованием рентгеновской дифракции с CrKα-излучением. Проанализировано влияние
параметров распыления на пористость и механические свойства покрытий. Результаты
показывают, что температура и скорость распыления играют решающую роль в харак-
теристиках покрытий.
Ключевые слова: MAX-фаза, высокоскоростной отжиг на воздухе
(HVAF), высокоскоростной отжиг в среде кислорода (HVOF), холодное напыление, скани-
рующая электронная микроскопия (SEM).
1. Barsoum M. W. The MN+1AXN phases: A new class of solids: Thermodynamically stable
nanolaminates // Prog. Solid State Chem. – 2000. – 28, N 1–4. – P. 201–281.
2. Magnuson M., Wilhelmsson O., Palmquist J.-P. et al. Electronic structure and chemical bond-
ing in Ti2AlC investigated by soft X-ray emission spectroscopy // Phys. Rev. B. – 2006. –74.
– P. 195–208.
3. Nowotny V. H. Strukturchemie einiger Verbindungen der Übergangsmetalle mit den elemen-
ten C, Si, Ge, Sn // Prog. Solid State Chem. – 1971. – 5. – P. 27–70.
4. Dubois S., Cabioc'h T., Chartier P., et al. A new ternary nanolaminate carbide: Ti3SnC2 //
J. Am. Ceram. Soc. – 2007. – 90, N 8. – P. 2642–2644.
5. Lin Z. J., Zhuo M. J., Zhou Y. C. et al. Microstructures and theoretical bulk modulus of lay-
ered ternary tantalum aluminium carbides // Ibid. – 2006. – 89, N 12. – P. 3765–3769.
6. Pietzka M. A. Schuster J. C. Summary of constitutional data on the aluminium-carbon-
titanium system // J. Phase Equilib. – 1994. – 21, N 2. – P. 392–400.
7. Lane N. J., Vogel S. C., Caspi E. N., Barsoum M. W. Ti5Al2C3: A new ternary carbide belong-
ing to MAX phases in the Ti–Al–C system // J. Am. Ceram. Soc. – 2012. – 95, N 10. –
P. 3352–3354.
www.ism.kiev.ua/stm 84
8. Rao J. C., Pei Y. T., Yang H. J. et al. TEM study of the initial oxide scales of Ti2AlC // Acta
Mater. – 2011. – 59. – P. 5216–5223.
9. Wang H. C., Zhou Y. C. Oxidation behaviour of Ti3AlC2 at 1000–1400 °C in air // Corros. Sci.
– 2003. – 45, N 5. – P. 891–907.
10. Lane N. J., Vogel S. C., Caspi E. N., Barsoum M. W. High-temperature neutron diffraction
and First-principles study of temperature-dependent crystal structures and atomic vibrations
in Ti3AlC2, Ti2AlC, and Ti5Al2C3 // J. Appl. Phys. – 2013. – 113. – P. 18–35.
11. Sundberg, M., et al. Alumina forming high-temperature silicides and carbides // Ceram. Int. –
2004. – 30, N 7. – P. 1899–1904.
12. Gupta S., Filimonov D., Zaitsev V. et al. Ambient and 550 °C tribological behaviour of select
MAX phases against Ni-based superalloys // Wear. – 2008. – 264, N 3–4. – P. 270–278.
13. Barnes L. A., Dietz Rago N. L., Leibowitz L. Corrosion of ternary carbides by molten lead //
J. Nucl. Mater. – 2008. – 373. – P. 424–428.
14. Wang X. H., Zhou Y. C. Layered machinable and electrically conductive Ti2AlC and Ti3AlC2
ceramics // J. Mat. Sci. Technol. – 2010. – 26, N 5. – P. 385–416.
15. Gutzmann H., Gärtner F., Höche D. et al. Cold spraying of Ti2AlC MAX-Phase Coatings //
J. Therm. Spray Technol. – 2013. – 22, N 2–3. – P. 406–412.
16. Eklund P., Beckers M., Jansson U. et al. The Mn+1AXn phases: Materials science and thin-
film processing // Thin Solid Films. – 2010. – 518, N 8. – P. 1851–1878.
17. Wilhelmsson O., Palmquist J.-P., Lewin E. et al. Deposition and characterization of ternary
thin films within the Ti–Al–C system by DC magnetron sputtering // J. Cryst. Growth. –
2006. – 291, N 1. – P. 290–300.
18. Frodelius J., Eklunda P., Beckersa M. et al. Sputter deposition from a Ti2AlC target: Process
characterization and conditions for growth of Ti2AlC // Thin Solid Films. – 2010. – 518. –
P. 1621–1626.
19. Rosen J., Ryves L., Persson P. O. Å., M. Bilek M. M. Deposition of epitaxial Ti2AlCTi2AlC
thin films by pulsed cathodic arc // J. Appl. Phys. – 2007. – 101, N 5. – P. 56101–56102.
20. Jiang J., Fasth A., Nylén P., Choi W. B. Microindentation and inverse analysis to character-
ize elastic-plastic properties for thermal sprayed Ti2AlC and NiCoCrAlY // J. Therm. Spray
Technol. – 2009. – 18, N 2. – P. 194–200.
21. Frodelius J., Sonestedt M., Björklund S. et al. Ti2AlC coatings deposited by high velocity
oxy-fuel spraying // Surf. Coat. Technol. – 2008. – 202, N 24. – P. 5976–5981.
22. Sonestedt M., Frodelius J., Sundberg M. et al. Oxidation of Ti2AlC bulk and spray deposited
coatings // Corros. Sci. – 2010. – 52, N 12. – P. 3955–3961.
23. Papyrin A., Kosarev V., Klinkov S. et al. Cold spray technology. – NX Amsterdam: Elsevier
Science, 2007.
24. Fung Y. C. Elasticity and thermodynamics. Foundations of solid mechanics / Ed. Englewood
Cliffs. – NJ: Prentice Hall International, 1965.
25. Trentin A. et al. Microstructure and mechanical properties of cold spray titanium coatings //
Proc. Int. Thermal Spray Conf. and Exposition “Thermal Spray: Global Solutions for Future
Application”, Singapore, 3–5 May, 2010, Dusseldorf: DVS-Berichte. – 264. – P. 654–656.
26. Dykhuizen R. C., Smith M. F., Gilmore D. L. et al. Impact of high velocity cold spray parti-
cles // J. Therm. Spray Technol. – 1999. – 8, N 4. – P. 559–564.
27. Gutzmann H., Gärtner F., Höche D. et al. Cold Spraying of Ti2AlC MAX-Phase Coatings //
Ibid. – 2013. – 22, N 2. – P. 406–412.
28. Schmidt T., Assadi H., Gärtner F. et al. From particle acceleration to impact and bonding in
cold spraying // Ibid. – 2009. – 18, N 5–6. – P. 794–808.
29. Verstak A., Baranovski V. Deposition of carbides by activated combustion of HVAF Spray-
ing // Proc. Int. Thermal Spray Conf. and Exposition “Thermal Spray Solutions: Advances in
Technology and Application”, Osaka, Japan, 10–14 May, 2004, Dusseldorf: DVS-German
Welding Society. – P. 551–556.
30. Jacobs L., Hyland M. M., De Bonte M. Comparative study of WC-cermet coatings sprayed
via the HVOF and the HVAF Process // J. Therm. Spray Technol. – 1998. – 7, N 2. – P. 213–
218.
31. Jacobs L., Hyland M. M., De Bonte M. Study of the influence of microstructural properties
on the sliding-wear behavior of HVOF and HVAF sprayed WC-cermet coatings // Ibid. –
1999. – 8, N 1. – P. 125–132.
32. Guo R. Q., Zhang C., Chen Qi, Liu Liangwei. Study of structure and corrosion resistance of
Fe-based amorphous coatings prepared by HVAF and HVOF // Corros. Sci. – 2011. – 53,
N 7. – P. 2351–2356.
ISSN 0203-3119. Сверхтвердые материалы, 2017, № 5 85
33. Hess J. B., Barrett C. S. Structure and nature of kink-bands in zinc // Trans. AIME. – 1949. –
185. – P. 599–605.
34. Barsoum M. W., El-Raghy T. The MAX phases: unique new carbide and nitride materials //
American Scientist. – 2001. – 89, N 4. – P. 334–343.
35. Bei, G-P. Guitton A., Joulain A. et al. Pressure-enforced plasticity in MAX phases: from
single grain to polycrystal investigation // Philos. Mag. – 2013. – 93, N 15. – P. 1784–1801.
36. Kawakita, J. Katanoda H., Watanabe M., Kuroda S. Warm spraying: An improved spray
process to deposit novel coatings // Surf. Coat. Technol. – 2008. – 202. – P. 4369–4373.
37. Guo J. M., Chen K. X., Liu Guanghua, Ning Xiao-Shan. Effects of TiC and Ti3AlC2 addition
on combustion synthesis of Ti3AlC2 powders // Rare Metal Mater. Eng. – 2003. – 32, N 3. –
P. 20–23.
38. Ma X. L., Zhu Y. L., Wang X. H., Zhou Y. C. Microstructural characterization of bulk Ti3AlC2
ceramics // Philos. Mag. A. – 2004. – 84, N 28. – P. 2969–2977.
39. Hong X. L., Mei B., Zhu J., Zhou W. Fabrication of Ti2AlC by hot pressing of Ti, TiC, Al,
and active carbon powder mixtures // J. Mat. Sci. – 2004. – 39, N 5. – P. 1589–1592.
40. Sonestedt M., Frodelius J., Palmquist J. P. et al. Microstructure of high velocity oxy-fuel
sprayed Ti2AlC coatings // Ibid. – 2010. – 45, N 10. – P. 2760–2769.
41. Zhang J., et al. Structure stability of Ti3AlC2 in Cu and microstructure evolution of
Cu–Ti3AlC2 composites // Acta Mater. – 2007. – 55. – P. 4381–4390.
Received 06.03.17
<<
/ASCII85EncodePages false
/AllowTransparency false
/AutoPositionEPSFiles true
/AutoRotatePages /None
/Binding /Left
/CalGrayProfile (Dot Gain 20%)
/CalRGBProfile (sRGB IEC61966-2.1)
/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
/sRGBProfile (sRGB IEC61966-2.1)
/CannotEmbedFontPolicy /Warning
/CompatibilityLevel 1.4
/CompressObjects /Off
/CompressPages true
/ConvertImagesToIndexed true
/PassThroughJPEGImages true
/CreateJobTicket false
/DefaultRenderingIntent /Default
/DetectBlends true
/DetectCurves 0.1000
/ColorConversionStrategy /LeaveColorUnchanged
/DoThumbnails true
/EmbedAllFonts true
/EmbedOpenType false
/ParseICCProfilesInComments true
/EmbedJobOptions true
/DSCReportingLevel 0
/EmitDSCWarnings false
/EndPage -1
/ImageMemory 1048576
/LockDistillerParams true
/MaxSubsetPct 100
/Optimize false
/OPM 1
/ParseDSCComments true
/ParseDSCCommentsForDocInfo true
/PreserveCopyPage true
/PreserveDICMYKValues true
/PreserveEPSInfo true
/PreserveFlatness true
/PreserveHalftoneInfo false
/PreserveOPIComments false
/PreserveOverprintSettings true
/StartPage 1
/SubsetFonts true
/TransferFunctionInfo /Remove
/UCRandBGInfo /Preserve
/UsePrologue false
/ColorSettingsFile ()
/AlwaysEmbed [ true
]
/NeverEmbed [ true
]
/AntiAliasColorImages false
/CropColorImages true
/ColorImageMinResolution 300
/ColorImageMinResolutionPolicy /OK
/DownsampleColorImages false
/ColorImageDownsampleType /Bicubic
/ColorImageResolution 300
/ColorImageDepth 8
/ColorImageMinDownsampleDepth 1
/ColorImageDownsampleThreshold 1.50000
/EncodeColorImages true
/ColorImageFilter /FlateEncode
/AutoFilterColorImages false
/ColorImageAutoFilterStrategy /JPEG
/ColorACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/ColorImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000ColorACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000ColorImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasGrayImages false
/CropGrayImages true
/GrayImageMinResolution 300
/GrayImageMinResolutionPolicy /OK
/DownsampleGrayImages false
/GrayImageDownsampleType /Bicubic
/GrayImageResolution 300
/GrayImageDepth 8
/GrayImageMinDownsampleDepth 2
/GrayImageDownsampleThreshold 1.50000
/EncodeGrayImages true
/GrayImageFilter /FlateEncode
/AutoFilterGrayImages false
/GrayImageAutoFilterStrategy /JPEG
/GrayACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/GrayImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000GrayACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000GrayImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasMonoImages false
/CropMonoImages true
/MonoImageMinResolution 1200
/MonoImageMinResolutionPolicy /OK
/DownsampleMonoImages false
/MonoImageDownsampleType /Bicubic
/MonoImageResolution 1200
/MonoImageDepth -1
/MonoImageDownsampleThreshold 1.50000
/EncodeMonoImages true
/MonoImageFilter /CCITTFaxEncode
/MonoImageDict <<
/K -1
>>
/AllowPSXObjects false
/CheckCompliance [
/None
]
/PDFX1aCheck false
/PDFX3Check false
/PDFXCompliantPDFOnly false
/PDFXNoTrimBoxError true
/PDFXTrimBoxToMediaBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXSetBleedBoxToMediaBox true
/PDFXBleedBoxToTrimBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXOutputIntentProfile (None)
/PDFXOutputConditionIdentifier ()
/PDFXOutputCondition ()
/PDFXRegistryName ()
/PDFXTrapped /False
/CreateJDFFile false
/Description <<
/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
/ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
/JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
/ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
/RUS ()
>>
/Namespace [
(Adobe)
(Common)
(1.0)
]
/OtherNamespaces [
<<
/AsReaderSpreads false
/CropImagesToFrames true
/ErrorControl /WarnAndContinue
/FlattenerIgnoreSpreadOverrides false
/IncludeGuidesGrids false
/IncludeNonPrinting false
/IncludeSlug false
/Namespace [
(Adobe)
(InDesign)
(4.0)
]
/OmitPlacedBitmaps false
/OmitPlacedEPS false
/OmitPlacedPDF false
/SimulateOverprint /Legacy
>>
<<
/AddBleedMarks false
/AddColorBars false
/AddCropMarks false
/AddPageInfo false
/AddRegMarks false
/ConvertColors /NoConversion
/DestinationProfileName ()
/DestinationProfileSelector /NA
/Downsample16BitImages true
/FlattenerPreset <<
/PresetSelector /MediumResolution
>>
/FormElements false
/GenerateStructure true
/IncludeBookmarks false
/IncludeHyperlinks false
/IncludeInteractive false
/IncludeLayers false
/IncludeProfiles true
/MultimediaHandling /UseObjectSettings
/Namespace [
(Adobe)
(CreativeSuite)
(2.0)
]
/PDFXOutputIntentProfileSelector /NA
/PreserveEditing true
/UntaggedCMYKHandling /LeaveUntagged
/UntaggedRGBHandling /LeaveUntagged
/UseDocumentBleed false
>>
]
>> setdistillerparams
<<
/HWResolution [2400 2400]
/PageSize [612.000 792.000]
>> setpagedevice
|