Nano-scratching resistance of highchromium white cast iron and its correlation with wear of cBN tool in machining
In this paper, a nano-scratch testing approach was used to measure and evaluate the abrasion wear resistance of high-chromium white cast irons in order to understand the wear mechanism in the interaction between the high-chromium white cast iron and the cBN cutting tool during the machining process....
Збережено в:
| Дата: | 2017 |
|---|---|
| Автори: | , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України
2017
|
| Назва видання: | Сверхтвердые материалы |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/160158 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Nano-scratching resistance of highchromium white cast iron and its correlation with wear of cBN tool in machining / L. Chen, J. Persson, J.E. Ståhl, J.M. Zhou // Сверхтвердые материалы. — 2017. — № 5. — С. 86-95. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-160158 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1601582025-02-09T12:57:39Z Nano-scratching resistance of highchromium white cast iron and its correlation with wear of cBN tool in machining Chen, L. Persson, J. Ståhl, J.E. Zhou, J.M. Исследование процессов обработки In this paper, a nano-scratch testing approach was used to measure and evaluate the abrasion wear resistance of high-chromium white cast irons in order to understand the wear mechanism in the interaction between the high-chromium white cast iron and the cBN cutting tool during the machining process. Scratch testing was performed on a nanoindentation instrument using a diamond indenter as the scratch tool. Linear multi-pass scratches in the same path were made on pre-worn surfaces of test materials. The correlation of the scratching resistance and tool wear measured from the machining is presented by the flank wear and maximum scratch depth. The appearance of the cutting edge on a cBN tool suggests that the abrasion wear is mainly related with a combined effect of the carbides and the matrix during machining the high-chromium white cast iron. Досліджено зносостійкість білих чавунів з високим вмістом хрому при використанні наноподряпання для того, щоб зрозуміти механізм зношування при взаємодії високохромістого білого чавуну і різального інструменту з КБН під час процесу обробки. Випробування наноподряпанням виконано на приладі для наноіндентування з використанням алмазного індентора. Лінійні багатопрохідні подряпини на одній і тій же ділянці було зроблено на попередньо зношених поверхнях матеріалів, що випробували. Кореляцію спротиву подряпанню і зносу інструменту, виміряних при точіння, визначено при порівнянні зносу фальца і максимальної глибини подряпини. Зовнішній вигляд ріжучої кромки на інструменті з cBN дозволяє припустити, що абразивний знос матеріалу в основному пов'язаний з взаємодією карбідів і матриці під час обробки високохромистого білого чавуну. Исследована износостойкость белых чугунов с высоким содержанием хрома при использовании наноцарапание для понимания механизма износа при взаимодействии высокохромистого белого чугуна и режущего инструмента из cBN во время процесса обработки. Испытания царапанием проводили на приборе наноиндентирования с использованием алмазного индентора. Линейные многопроходные царапины на одном и том же участке выполняли на предварительно изношенных поверхностях испытываемых материалов. Корреляция сопротивления царапанию и износа инструмента, измеренного при точении, показана при сравнении износа фланца и максимальной глубиной царапины. Внешний вид режущей кромки на инструменте из cBN свидетельствует о том, что абразивный износ в основном связан с взаимодействием карбидов и матрицы при обработке высокохромистого белого чугуна. This research is a part of the strategic research program the Sustainable Production Initiative SPI, cooperation between Lund University and Chalmers University of Technology. The author would like to thank the Xylem AB for providing the work materials and the financial support by the personnel start-up project (Grant Agreement No: YJ201642) of Sichuan University. 2017 Article Nano-scratching resistance of highchromium white cast iron and its correlation with wear of cBN tool in machining / L. Chen, J. Persson, J.E. Ståhl, J.M. Zhou // Сверхтвердые материалы. — 2017. — № 5. — С. 86-95. — Бібліогр.: 10 назв. — англ. 0203-3119 https://nasplib.isofts.kiev.ua/handle/123456789/160158 621.9.011:669.131.2 en Сверхтвердые материалы application/pdf Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Исследование процессов обработки Исследование процессов обработки |
| spellingShingle |
Исследование процессов обработки Исследование процессов обработки Chen, L. Persson, J. Ståhl, J.E. Zhou, J.M. Nano-scratching resistance of highchromium white cast iron and its correlation with wear of cBN tool in machining Сверхтвердые материалы |
| description |
In this paper, a nano-scratch testing approach was used to measure and evaluate the abrasion wear resistance of high-chromium white cast irons in order to understand the wear mechanism in the interaction between the high-chromium white cast iron and the cBN cutting tool during the machining process. Scratch testing was performed on a nanoindentation instrument using a diamond indenter as the scratch tool. Linear multi-pass scratches in the same path were made on pre-worn surfaces of test materials. The correlation of the scratching resistance and tool wear measured from the machining is presented by the flank wear and maximum scratch depth. The appearance of the cutting edge on a cBN tool suggests that the abrasion wear is mainly related with a combined effect of the carbides and the matrix during machining the high-chromium white cast iron. |
| format |
Article |
| author |
Chen, L. Persson, J. Ståhl, J.E. Zhou, J.M. |
| author_facet |
Chen, L. Persson, J. Ståhl, J.E. Zhou, J.M. |
| author_sort |
Chen, L. |
| title |
Nano-scratching resistance of highchromium white cast iron and its correlation with wear of cBN tool in machining |
| title_short |
Nano-scratching resistance of highchromium white cast iron and its correlation with wear of cBN tool in machining |
| title_full |
Nano-scratching resistance of highchromium white cast iron and its correlation with wear of cBN tool in machining |
| title_fullStr |
Nano-scratching resistance of highchromium white cast iron and its correlation with wear of cBN tool in machining |
| title_full_unstemmed |
Nano-scratching resistance of highchromium white cast iron and its correlation with wear of cBN tool in machining |
| title_sort |
nano-scratching resistance of highchromium white cast iron and its correlation with wear of cbn tool in machining |
| publisher |
Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України |
| publishDate |
2017 |
| topic_facet |
Исследование процессов обработки |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/160158 |
| citation_txt |
Nano-scratching resistance of highchromium white cast iron and its correlation with wear of cBN tool in machining / L. Chen, J. Persson, J.E. Ståhl, J.M. Zhou // Сверхтвердые материалы. — 2017. — № 5. — С. 86-95. — Бібліогр.: 10 назв. — англ. |
| series |
Сверхтвердые материалы |
| work_keys_str_mv |
AT chenl nanoscratchingresistanceofhighchromiumwhitecastironanditscorrelationwithwearofcbntoolinmachining AT perssonj nanoscratchingresistanceofhighchromiumwhitecastironanditscorrelationwithwearofcbntoolinmachining AT stahlje nanoscratchingresistanceofhighchromiumwhitecastironanditscorrelationwithwearofcbntoolinmachining AT zhoujm nanoscratchingresistanceofhighchromiumwhitecastironanditscorrelationwithwearofcbntoolinmachining |
| first_indexed |
2025-11-26T00:23:56Z |
| last_indexed |
2025-11-26T00:23:56Z |
| _version_ |
1849810367356600320 |
| fulltext |
www.ism.kiev.ua/stm 86
Исследование процессов обработки
UDC 621.9.011:669.131.2
L. Chen1, *, J. Persson2, J. E. Ståhl2, J. M. Zhou2
1School of manufacturing science and engineering,
Sichuan University, Chengdu, China
2Division of production and materials engineering, Lund University,
Lund, Sweden
*chenlingscu@scu.edu.cn
Nano-scratching resistance of high-chromium
white cast iron and its correlation with wear
of cBN tool in machining
In this paper, a nano-scratch testing approach was used to measure
and evaluate the abrasion wear resistance of high-chromium white cast irons in order
to understand the wear mechanism in the interaction between the high-chromium white
cast iron and the cBN cutting tool during the machining process. Scratch testing was
performed on a nanoindentation instrument using a diamond indenter as the scratch
tool. Linear multi-pass scratches in the same path were made on pre-worn surfaces of
test materials. The correlation of the scratching resistance and tool wear measured
from the machining is presented by the flank wear and maximum scratch depth. The
appearance of the cutting edge on a cBN tool suggests that the abrasion wear is mainly
related with a combined effect of the carbides and the matrix during machining the
high-chromium white cast iron.
Keywords: scratch test, high-chromium cast iron, fracture, wear
mechanism, cBN.
INTRODUCTION
High-chromium white cast iron (HCCI) has exclusive properties
in wear resistance due to the substantial presence of chromium-rich carbides,
which makes it suitable for a wide range of applications in the mining industry.
Machinability of the HCCIs is strongly influenced by their microstructure and
microscale mechanical properties or the material abrasiveness. Factors such as
grain size of carbides, phases, and wear resistance properties play important roles
and determine the extent of tool wear, stability, and surface quality during
machining [1]. From the previous studies, the high hardness (500 HB) of the matrix
and imbedded cementite (Fe3C) formed at the rapid cooling rate during the casting
process caused the high abrasion wear resistance and a rapid cutting tool
© L. CHEN, J. PERSSON, J. E. STÅHL, J. M. ZHOU, 2017
ISSN 0203-3119. Сверхтвердые материалы, 2017, № 1 87
deteriorations, such as cutting tools of pcBN (polycrystalline cubic Boron Nitride)
[2]. This leads to the generally low production efficiency and high production cost.
The abrasion resistance of these materials is profoundly influenced by the
microstructure and micromechanical properties of the material. The performance of
HCCI materials can be improved by a heat treatment [3] and changes of the
composition [4, 5]. The composition of the matrix phase can be suitably modified
to achieve a proper balance between the resistance to abrasion and the toughness
needed to withstand a repeated impact [6]. However, the wear performance of the
material is very hard to evaluate for the wide variety of acceptable wear test, which
can give the significantly different results depending on the different conditions
and parameters from the test. In this study, an attempt has been made to understand
the effect of metallurgical factors such as the morphology and volume fraction of
carbides as well as wear resistance properties of the machinability of the materials.
The microstructures of HCCI materials with different compositions (carbon and
silicon contents) have been characterized under the as-cast as well as annealed and
hardened conditions using scanning electron microscopy, Nano-scratching and
machining techniques.
MATERIAL PREPARATION
The HCCI is virtually a composite material, which includes a metallic matrix
and is reinforced with carbide particles. The minor change of chemical
composition and heat treatments are applied to modify the composition of the
matrix phase to achieve different wear resistance performance of the material. In
this study, two groups of high-chromium cast irons were prepared, with the
chromium content of 25.7 wt %. The group with lower C–Si content had 2.71 wt %
C and 0.8 wt % Si and the group with higher C–Si content had 2.95 wt % C and
1.47 wt % Si. The alloys were cast into rounds (66 mm in diameter) and cut to
pieces of 10×10×5 mm3 using a wire electrical discharge machine. The groups
were divided on the basis of carbon–silicon (C–Si) contents. There are three
samples per group, one corresponded to the as-cast condition, the other two to the
annealed (heating to 930 °C, holding time: 1.5 h, cooling to 650 °C, holding time:
1h, cooling to 600 °C, holding time 2 h, cooled to room temperature) and the
hardened conditions (heating to 940 °C, holding time 2 h, quenched to room
temperature). All the specimens were mounted, ground, and polished following
standard metallographic procedure. The final polishing procedure was done SiO2
particles (0.04 μm). The etchant in the test is a modified glyceregia [7].
The microstructures of the different samples are affected by the composition
and heat treatments significantly, as presented in the previous research [8], one of
the typical microstructure of as-cast sample is shown in Fig. 1. In all the samples,
regardless of the initial composition, no significant change in the morphology of
the eutectic carbide was observed after a heat treatment. The main transformation
happened on the matrix. In the lower C–Si group, the matrix of the as-cast sample
contains the primary austenite dendrites with needle-like martensite; after the
annealing procedure, the austenite and martensite are transformed to bainite in the
matrix, and plenty of secondary carbides are observed in the matrix; in the
procedure of hardening, the matrix is transformed to mixture of the martensite and
finer size of secondary carbides, the volume and size of secondary carbides are
smaller than the secondary carbides in the matrix of annealed sample. As the same,
the transformation in the higher C–Si group is also happened on the matrix only.
The as-cast sample is bainite; annealed sample is a mixture of perlite and big size
of secondary carbides, and hardened sample is a mixture of martensite and finer
www.ism.kiev.ua/stm 88
size of secondary carbides. The SEM images of 6 samples showed the influence of
heat treatments on the microstructures and phase evolution in the samples in
greater detail in the matrix.
Fig. 1. Typical microstructure of HCCI material in lower C–Si group and as-cast condition.
NANO-SCRATCHING TEST AND MACHINING SETUP
The mechanical properties of the various phases such as hardness and wear
resistance properties were determined from the tests. Experimental results from
each scratch performed at random locations on the surface of a multiphase material
can be presented as distance-depended plots of scratch depth and force. Multiple
peaks in the plot of scratch depth correspond to the various phases in the material
before the cracking of the carbides, and the cracking position showed the fracture
properties of the carbides of the material. The test results were calibrated by a
fused silica, and the detail procedure of the tribological properties analysis is
presented in Fig. 2.
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Distance, μm Distance, μm
Topography, start
Topography, end
Scratching test
–1200
–1000
–800
–600
–400
–200
0
200
–100
0
100
200
300
400
500
600
700
800
Ref. line
Plastic work
Elastic work
h
max
h
r
D
ep
th
,
n
m
D
ep
th
,
n
m
a b
Fig. 2. The calibrated scratch test of fused silica sample by the load of 100 mN, test curve with
topography effect (a), the analytical curve by removing of topography effect (b).
The scratch tests were performed on a NanoTest Vantage nanoindentation in-
strument with a loading range of 0.01 to 500 mN and a conical diamond indenter.
The abrasive wear of these samples was evaluated and compared using the Nano-
scratch techniques under different loads. A damage caused by scratching was
ISSN 0203-3119. Сверхтвердые материалы, 2017, № 1 89
examined using depth-distance curves. The material pile-up took place in all
scratched samples, but to different degrees. The presented results are based on the
diamond conical indenter with 5-µm tip radius, the effects of the composition and
heat treatment on the overall wear behaviour at various loads are investigated. The
other settings are shown in the table.
The test setup in nano-scratch
Name Value
Scanning velocity, µm⋅s–1 10
Scanning length, µm 500
Number of passes 22
Number of scratches per topography 1
Topography load, mN 0.1
Scratch load, mN, is applied after 100 µm 10, 100, 200, 300
Load rate, mN⋅s–1 5
The scratched surface was significantly different for two groups with different
heat treatment conditions. It was found that the wear resistance of HCCI samples
does not follow the classical theory; the wear resistance is not linearly proportional
to the hardness. This discrepancy was suggested to being a result of different wear
mechanisms operating in different materials.
Since the divergence in wear values is the wide variety of acceptable wear tests,
which can give significantly different results depending on the test conditions such
as sliding vs. abrasive wear (two or three bodies), sliding load and speed, and
surface roughness. The method to assess the wear performance is compared the
depth curves of all samples by the same load. The scratch test has done on the load
of 10 and 300 mN on the length of 500 μm. The 10 mN has done on the multi-
cycles of 20 times.
The scratched surfaces were significantly different for two groups with different
heat treatment conditions. It was found that the wear resistance of HCCI samples
does not follow the classical theory; the wear resistance is not linearly proportional
to the hardness. This discrepancy was suggested to being a result of different wear
mechanisms operating in different materials.
Since the divergence in wear values is the wide variety of acceptable wear tests,
which can give significantly different results depending on the test conditions such
as sliding vs. abrasive wear (two or three bodies), sliding load and speed, and
surface roughness. The method to assess the wear performance compares the depth
curves of all samples by the same load. The scratch test was done on the load of 10
and 300 mN on the length of 500 μm. The 10 mN was shown on the multi-cycles
of 20 times.
In the test results, the curves are adjusted to horizontal way, and the removal of
the topography effect of the initial surface, seen as Fig. 2, a. The scratching curve
is only showing the deformation, and the residual deformation is presented as the
end topography curve without the roughness effect. The start topography curve is
presented as the reference line in Fig. 2, b. The final results are shown in Fig. 2, b.
The pre-test is the topography measurement, and the follow is elastic deformation
part for the yield stress evaluation. The plastic part shows the wear defect by the
applied load. The friction coefficient is obtained from the stable part of the curve.
Under the load of the 100 mN, the yield stress happened under the 400 nm depth,
www.ism.kiev.ua/stm 90
and the value is about 4.5 GPa. The value is matched with the reference value of
fused silica. Because the size effect also existed in the test results, the presented
study only presents the yield point on the specific load. The topography curve is
applied to measure the residual deformation after the scratching, and the maximum
depth is obtained from the scratching pass of the curve.
Since the wear performance of the material is very hard to evaluate for the wide
variety of acceptable wear tests, which can give the significantly different results
depending on the different conditions and parameters of the test. From the pre-
sented work, the conditions are controlled in humidity, temperature, roughness, and
so on. The test parameters are evaluated by hmax and scratch load.
All machining tests were performed on a SMT500 turning center employing a
continuously variable spindle speed up to a maximum of 4000 rpm and a driver
motor rated up to 75 kw. The selection of cutting parameters covers the range of
industrial production and the recommendation from cutting tools manufacturer.
Dry machining tests were conducted throughout the tests; the machining test setup
is presented in the previous work [9]. Pre-cut was made on each workpiece before
the tests in order to remove the rough out-layer from prior casting process and heat
treatment. Flank wear on the cutting tool was measured by means of Alicona
Infinite Focus optical microscope. The materials were cast into bar shapes with a
diameter of 66 mm and a length of 370 mm.
RESULTS AND DISCUSSIONS
The mechanical properties of various phases and their abrasion resistance
properties were determined by the Nano-scratch approach. This technique is often
used for measuring the fracture, wear, and friction behavior over a certain length
on the surface of the material. It has the potential to extract the mechanical
properties of the measured phases provided the load of scratch which is carefully
chosen to minimize the influence of the surrounding medium [10].
The heat treatment and composition are significant for the wear performance of
the HCCI in scratch tests. Linear multi-passes scratches in the same path were
made on pre-worn surfaces. The results of the sequential multi-passes tests on the
pre-worn surfaces showed that the heat treatment and composition affect the
maximum scratch depth (hmax) in Fig. 3 by the load of 10 and 100 mN. In Figs. 3,
a–c, the annealed samples have the highest maximum scratch depth (hmax) and the
hardened samples have the lowest hmax. In composition group (see Figs. 3, b–d),
the samples in higher C–Si group showed the better wear resistance performance
than corresponding samples in the lower C–Si group.
Figure 3 shows that the hardened sample has the smallest scratch depth in the
multi-cycles 10 mN test and the increasing rate didn’t changed too much; the as-
cast sample has the middle value and small increasing rate; but the annealed sam-
ple has the highest increasing rate in all samples in a composition group of lower
C-Si, seen in Fig. 3, a. The results of the sequential multi-passes tests on pre-worn
surfaces showed that a gradual enlargement of pre-existing cavities in primary
carbides occurs by a fracture near the unsupported edges of the cavities. Figure 3, b
shows that the lower C–Si group has the similar scratch maximum depth with the
higher C–Si in as-cast condition. Under the load of 10 mN, the wear only happened
on the matrix, the hmax of annealed sample in the lower C–Si group showed the
largest increasing rate in all samples. The hmax of as-cast sample in the higher C–Si
group showed the larger increasing rate than the corresponding sample in the lower
C–Si group.
ISSN 0203-3119. Сверхтвердые материалы, 2017, № 1 91
1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19
Number of passes Number of passes
0
50
100
S
cr
at
ch
d
ep
th
h
m
ax
,
nm
150
200
250
300
350
0
50
100
S
cr
at
ch
d
ep
th
h
m
ax
, n
m
150
200
250
300
350
1
2
3
1
2
3
4
5
4
5
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Number of passes Number of passes
0
500
1000
1500
2000
2500
3000
3500
4000
S
cr
at
ch
d
ep
th
h
m
ax
, n
m
0
500
1000
1500
2000
2500
3000
3500
4000
S
cr
at
ch
d
ep
th
h
m
ax
, n
m
a b
c d
Fig. 3. The results of the sequential multi-passes tests on pre-worn surfaces: heat treatment effect
by 10 mN (a), composition effect by 10 mN (b), heat treatment effect by 100 mN (c), composi-
tion effect by 100 mN (d): as cast (1), annealed (2), hardened (3), lower C–Si (4), higher C–Si
(5).
Once load of scratch increased to 100 mN, the wear performance is abrasive
wear by the linear increasing of the maximum depth with the test number. Figure 3,
c showed the hardened sample has the best wear resistance performance in the
multi-passes by 100 mN test. Figure 3, d showed that the hmax of as-cast sample in
higher C–Si group has the higher hmax than the corresponding sample in lower C–Si
group. After 10 passes of scratch tests, the hmax is higher 3.5 μm in annealed
sample, and this height is larger than the half of the average grain size of carbides,
and the particle is possibly removed from the matrix. The cracking and fracture are
increasing with the increasing load and number of passes. Based the above results,
the wear resistance performance is not depend only on the carbides’ type and
volume fraction; it is also related to the matrix hardness and hardness distribution.
With the increasing number of scratches passes, the softer hardness of the
matrix has the larger wear volume. The annealed sample in the lower C–Si group
has the largest scratch depth in the matrix for the smallest matrix hardness
(3.2 GPa). With the increased wear test numbers, it showed the largest increasing
rate of hmax with the increased test number in annealed sample. This means the
annealed sample has the largest wear volume and worst wear resistance
performance, the carbides in the annealed samples are easy to be removed from the
soft matrix and caused the fatigue wear. In total, the scratch depths and the depths
different are directly related the phase hardness.
From the multi-passes scratches tests, the hardened sample has the smallest hmax
and caused smallest wear volume. In the comparison of the heat treatments in two
groups, hardened samples have the smallest wear volume, and largest wear volume
in annealed sample for the highest volume fraction. Under the load of 10 mN, the
abrasive wear related to the hardness and volume fraction of the matrix. The
maximum scratch depth (hmax) is affected by the hardness of phases of the material.
Due to the similar hardness of the carbides in each composition group, the higher
hardness of the matrix has the lower hmax in the scratch tests.
www.ism.kiev.ua/stm 92
The composition effect of C and Si showed that the as-cast sample in lower
C–Si has the better wear resistance performance. With the increased silicon in the
material, the volume of carbides in increased and improved the hardness
distribution of carbides, the results are presented in the previous work [8].
However, the silicon is also improved the bainite transformation in the matrix and
increased the hmax in the higher silicon group. Gross carbide fracture was not
produced during scratch testing even though the loads used were considerably in
excess of those experienced during low-stress abrasion.
As-cast sample in the higher C–Si group is applied to study the relationship of the
wear performance with the increased loads. The abrasive wear is performed by the
straight grooving on the surface by the load of 100 mN. At the load of 200 mN, the
grooving is not straight for the deformation of carbides. The two curves are different
for the cracking at the length about 300 μm and generated the higher depth. After the
load of 300 mN, the serious cracking and damage happened for the different
deformation of discontinuous carbides and matrix in the scratch tests. The difference
deformation between matrix and carbides is increasing with the increased loads, and
the recovering force generates the high side force and bent the groove line from
scratch. The rounding of carbides was shown to be due to a micro-fracture of the sharp
carbide edges left unsupported by the matrix. Scratch tests on pre-worn surfaces
produced no grooves on the carbides even at high loads, and the matrix between the
carbides was protected by the protruding carbides. The results showed the hardness and
hardness distribution in matrix of as-cast sample in higher C–Si group are very
important to support the carbides of the material, and improve the wear performance.
Since the different load has the different scratch depth, the load effect on
different samples is difficult to compare directly. The relative value is used to
evaluate the wear performance of the materials. The relative value is defined by the
data compared to mean in the percentage way, it is expressed as ki = yi/ӯ. The
results are presented in Fig. 4. The hmax is stable changed with increased load. It
means that the load shows little effect on the difference of hmax. Due to the wear
resistance of the materials is related to the wear depth in the materials. In this way,
the hmax is suggested to represent the abrasiveness of the material.
1
2
3
Sp1 Sp2 Sp3 Sp4 Sp5 Sp6
0.5
N
or
m
al
iz
ed
v
al
ue
h
m
ax
0
1.0
1.5
2.0
4
Fig. 4. Relative value of hmax represent wear performance features of HCCI materials by the load
of 10 (1), 100 (2), 200 (3), 300 (4) mN.
Under the different loads, the hmax is only related with the hardness of the ma-
trix, and little effect by the load. The hardened sample in the higher C–Si group
(Sp 6) has the minimum value in all six samples for the highest carbide volume
fraction by analysis of metallurgical and scratch testes. The annealed sample in the
ISSN 0203-3119. Сверхтвердые материалы, 2017, № 1 93
higher C–Si group (Sp 5) has the maximum value for the softest matrix of pearlite.
In the annealed sample of the lower C–Si group (Sp 2) and the as-cast sample in
the higher C–Si group (Sp 4), the bainite has the larger work harden effect to
strengthen abrasiveness properties of the material, so the abrasiveness value is
higher than that of sample Sp 5. In the as-cast sample in lower C–Si group (Sp 1),
the hard carbides are enhanced by the bound phase of austenite and martensite.
The composition group showed that the lower C–Si group had the better wear
resistance than the higher C–Si group for the finer grain size of carbides with the
same heat treatment. And the heat treatment changed the matrix hardness.
Deformation of the scratch started the soft matrix firstly, which is proved by the
low load of the scratch test. With the increased load, the material generated the
cracking and finally deformed the carbides and generated the serious damage of the
material. The wear resistance is related to the hardness of the matrix and carbides
and their volume fraction. With the higher hardness of the matrix and higher
volume fraction of the carbides, the sample has the better wear resistance. Scratch
tests performed using fragments of carbide debris showed that carbide can cut
through another carbide. It is proposed that the grooves which are produced in the
leading edges of carbides during abrasion are caused by carbide debris.
Effect of the work materials on flank wear was shown in Fig. 5, a. Larger flank
wear was found on the cutting tool after machining the lower C–Si material in
comparison to the flank wear obtained after machining the higher C–Si material. This
could be explained by its higher hardness of matrix in the lower C–Si material than
higher C–Si material. In lower C–Si material, the main part of the matrix is formed
by 52 % of martensite, while the main part of the matrix in the higher C–Si material
is formed by bainite. The hardness of bainite is much lower than of martensite.
Figure 5, a also reveals the effect of the cutting speeds on tool wear when two
materials were tested. The tool wear was clearly influenced more by the cutting
speed when lower C–Si material was cut. The hardness of austenite could be
increased as result of strain hardening at the higher shear rate in higher cutting
speed, which reinforces the total hardness of matrix in this material. However, little
influence on tool wear was found in the machining higher C–Si material.
As mentioned in the above, high-chromium white cast iron is very abrasive
material, causing be embedded hard carbides. The abrasiveness of the materials can
be described by hmax from the scratch test, which is proportional to the amount of
carbides, carbide hardness and the hardness difference between the carbide and
matrix. Figure 5, b reveals the correlation between hmax and flank wear of the
cutting tool, which suggests that the wear of the cutting tool generated during
machining of the high-chromium white cast iron is pre-dominated by abrasive wear
and the hmax can to some extent predict the machinability of the work material in
terms of the abrasive tool wear.
The wear resistance performance is tested from the different loads in HCCI
materials, the deformation of the scratch is happened in the elastic deformation of
the material, and in the softest matrix the plastic deformation happened firstly.
With the increased load, the material generated the cracking and finally deformed
the carbides of the material seriously. The wear resistance is related with the
hardness of the matrix and carbides, and their volume fraction. With the higher
hardness and higher volume fraction, the sample has the better wear resistance.
From the increased flank wear with the increasing of hmax, tool wear is mainly
affected by the scratch resistance of the materials. The abrasion resistance
measured by this method has been shown to correlate with hmax in scratch test
response and with the performance of cBN tools in cutting tests.
www.ism.kiev.ua/stm 94
1
2
3Sp1
50 0 100 150 200
Sp2
Sp3
Sp4
Sp5
Sp6
250 300
500 100 150
250
300
200
50
100
150
VB
max
, μm
V
B
, μ
m
h
max
vs. VB
h
max
, nm
a
b
Fig. 5. Influence of materials on tool wear (a) and the correlation of hmax with tool wear in ma-
chining (b): vc = 120 (1), 140 (2), 160 (3) m/min.
CONCLUSIONS
Wear resistance of the HCCI materials were characterised with use of nano-
scratch tests on a nanoindentation instrument. Types of carbide and correspondent
volume fraction play a decisive role in the wear resistance of the test materials. The
morphology of carbides and volume fraction are strongly affected by the chemical
composition (carbon and silicon contents) as well as the heat treatment applied on
them. With the increasing scratching load, the composition of the materials demon-
strates a predominate effect in the wear resistance in comparison to the effect of
heat treatment. The maximum scratch depth in nano-scratch test exhibited the good
agreements with wear resistance performance of the HCCI materials.
The correlation of the scratching resistance and tool wear measured in
machining is presented by the flank wear and maximum scratch depth. The
appearance of the cutting edge on a cBN tool suggests that the abrasion wear is
mainly related with combination effect of the carbides and the matrix during
machining the high-chromium white cast iron. From the increased flank wear with
the increasing hmax, tool wear is mainly affected by the scratch resistance of the
materials. The abrasion resistance measured by this method has been shown to
correlate with hmax in scratch test response and with the performance of cBN tools
in cutting tests.
ACKNOWLEDGMENT
This research is a part of the strategic research program the Sustainable
Production Initiative SPI, cooperation between Lund University and Chalmers
University of Technology. The author would like to thank the Xylem AB for
providing the work materials and the financial support by the personnel start-up
project (Grant Agreement No: YJ201642) of Sichuan University.
ISSN 0203-3119. Сверхтвердые материалы, 2017, № 1 95
Досліджено зносостійкість білих чавунів з високим вмістом хрому при
використанні наноподряпання для того, щоб зрозуміти механізм зношування при взаємо-
дії високохромістого білого чавуну і різального інструменту з КБН під час процесу оброб-
ки. Випробування наноподряпанням виконано на приладі для наноіндентування з викорис-
танням алмазного індентора. Лінійні багатопрохідні подряпини на одній і тій же ділянці
було зроблено на попередньо зношених поверхнях матеріалів, що випробували. Кореляцію
спротиву подряпанню і зносу інструменту, виміряних при точіння, визначено при порів-
нянні зносу фальца і максимальної глибини подряпини. Зовнішній вигляд ріжучої кромки на
інструменті з cBN дозволяє припустити, що абразивний знос матеріалу в основному
пов’язаний з взаємодією карбідів і матриці під час обробки високохромистого білого
чавуну.
Ключові слова: випробування на подряпини, високохромистий чавун,
руйнування, механізм зношування, кБН.
Исследована износостойкость белых чугунов с высоким содержанием
хрома при использовании наноцарапание для понимания механизма износа при взаимодей-
ствии высокохромистого белого чугуна и режущего инструмента из cBN во время про-
цесса обработки. Испытания царапанием проводили на приборе наноиндентирования с
использованием алмазного индентора. Линейные многопроходные царапины на одном и
том же участке выполняли на предварительно изношенных поверхностях испытываемых
материалов. Корреляция сопротивления царапанию и износа инструмента, измеренного
при точении, показана при сравнении износа фланца и максимальной глубиной царапины.
Внешний вид режущей кромки на инструменте из cBN свидетельствует о том, что
абразивный износ в основном связан с взаимодействием карбидов и матрицы при обра-
ботке высокохромистого белого чугуна.
Ключевые слова: испытания на царапание, высокохромистый чугун,
разрушение, механизм износа, cBN.
1. Tabrett C. P., Sare I. R., Ghomashchi M. R. Microstructure-property relationships in high-
chromium white iron alloys // Int. Mater. Rev. – 1996. – 41, N 2. – P. 59–82.
2. Zhou J. M., Andersson M. Machinability of abrasion resistance of cast iron with pcBN //
Cutting Tools, Mater. Manufact. Proc. – 2008. – 23, N 5. – P. 506–512.
3. Kim C. K., Lee S., Jung J. Y. Effects of heat treatment on wear resistance and fracture tough-
ness of duo-cast materials composed of high-chromium white cast iron and low-chromium
steel // Metall. Mater. Trans. A. – 2006. – 37, N 3. – P. 33–643.
4. Bedolla Jacuinde A., Rainforth W. M. The wear behavior of high-chromium white cast irons
as a function of silicon and Mischmetal content // Wear. – 2001. – 250, N 1–12. – P. 449–461.
5. Pinho K. F., Boher C., Scandian C. Effect of molybdenum and chromium contents on sliding
wear of high-chromium white cast iron at high temperature // Lubrication Sci. – 2013. – 25,
N 2. – P. 153–162.
6. ASTM A608/A608M-14, Standard Specification for Centrifugally Cast Iron-Chromium-
Nickel High-Alloy Tubing for Pressure Application at High Temperatures. – West Consho-
hocken, PA: ASTM International, 2012.
7. Metallography and Microstructures: ASM Handbook: Vol. 9 / Ed. G. F. Vander Voort. –
Ohio: ASM International, Materials Park , 2004. – 1184 р.
8. Chen L., Iyengar S., Zhou J. et al. Characterization of Microstructure and Mechanical Proper-
ties of High-Chromium Cast Irons Using SEM and Nanoindentation // J. Mater. Eng. Perform.
– 2015. – 24, N 1. – P. 98–105.
9. Chen L., Zhou J., Bushlya V. et al. Performance assessment of pcBN and bcBN tools in ma-
chining of high-chromium white cast iron // Int. J. Adv. Manuf. Technol. – 2015. – 79, N 1–4.
– P. 635–644.
10. Xu J., Yao W. Nano-scratch as a new tool for assessing the nano-tribological behavior of
cement composite // Mater. Struct. – 2011. – 44, N 9. – P. 1703–1711.
Received 06.03.17
<<
/ASCII85EncodePages false
/AllowTransparency false
/AutoPositionEPSFiles true
/AutoRotatePages /None
/Binding /Left
/CalGrayProfile (Dot Gain 20%)
/CalRGBProfile (sRGB IEC61966-2.1)
/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
/sRGBProfile (sRGB IEC61966-2.1)
/CannotEmbedFontPolicy /Warning
/CompatibilityLevel 1.4
/CompressObjects /Off
/CompressPages true
/ConvertImagesToIndexed true
/PassThroughJPEGImages true
/CreateJobTicket false
/DefaultRenderingIntent /Default
/DetectBlends true
/DetectCurves 0.1000
/ColorConversionStrategy /LeaveColorUnchanged
/DoThumbnails true
/EmbedAllFonts true
/EmbedOpenType false
/ParseICCProfilesInComments true
/EmbedJobOptions true
/DSCReportingLevel 0
/EmitDSCWarnings false
/EndPage -1
/ImageMemory 1048576
/LockDistillerParams true
/MaxSubsetPct 100
/Optimize false
/OPM 1
/ParseDSCComments true
/ParseDSCCommentsForDocInfo true
/PreserveCopyPage true
/PreserveDICMYKValues true
/PreserveEPSInfo true
/PreserveFlatness true
/PreserveHalftoneInfo false
/PreserveOPIComments false
/PreserveOverprintSettings true
/StartPage 1
/SubsetFonts true
/TransferFunctionInfo /Remove
/UCRandBGInfo /Preserve
/UsePrologue false
/ColorSettingsFile ()
/AlwaysEmbed [ true
]
/NeverEmbed [ true
]
/AntiAliasColorImages false
/CropColorImages true
/ColorImageMinResolution 300
/ColorImageMinResolutionPolicy /OK
/DownsampleColorImages false
/ColorImageDownsampleType /Bicubic
/ColorImageResolution 300
/ColorImageDepth 8
/ColorImageMinDownsampleDepth 1
/ColorImageDownsampleThreshold 1.50000
/EncodeColorImages true
/ColorImageFilter /FlateEncode
/AutoFilterColorImages false
/ColorImageAutoFilterStrategy /JPEG
/ColorACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/ColorImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000ColorACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000ColorImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasGrayImages false
/CropGrayImages true
/GrayImageMinResolution 300
/GrayImageMinResolutionPolicy /OK
/DownsampleGrayImages false
/GrayImageDownsampleType /Bicubic
/GrayImageResolution 300
/GrayImageDepth 8
/GrayImageMinDownsampleDepth 2
/GrayImageDownsampleThreshold 1.50000
/EncodeGrayImages true
/GrayImageFilter /FlateEncode
/AutoFilterGrayImages false
/GrayImageAutoFilterStrategy /JPEG
/GrayACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/GrayImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000GrayACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000GrayImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasMonoImages false
/CropMonoImages true
/MonoImageMinResolution 1200
/MonoImageMinResolutionPolicy /OK
/DownsampleMonoImages false
/MonoImageDownsampleType /Bicubic
/MonoImageResolution 1200
/MonoImageDepth -1
/MonoImageDownsampleThreshold 1.50000
/EncodeMonoImages true
/MonoImageFilter /CCITTFaxEncode
/MonoImageDict <<
/K -1
>>
/AllowPSXObjects false
/CheckCompliance [
/None
]
/PDFX1aCheck false
/PDFX3Check false
/PDFXCompliantPDFOnly false
/PDFXNoTrimBoxError true
/PDFXTrimBoxToMediaBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXSetBleedBoxToMediaBox true
/PDFXBleedBoxToTrimBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXOutputIntentProfile (None)
/PDFXOutputConditionIdentifier ()
/PDFXOutputCondition ()
/PDFXRegistryName ()
/PDFXTrapped /False
/CreateJDFFile false
/Description <<
/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
/ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
/JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
/ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
/RUS ()
>>
/Namespace [
(Adobe)
(Common)
(1.0)
]
/OtherNamespaces [
<<
/AsReaderSpreads false
/CropImagesToFrames true
/ErrorControl /WarnAndContinue
/FlattenerIgnoreSpreadOverrides false
/IncludeGuidesGrids false
/IncludeNonPrinting false
/IncludeSlug false
/Namespace [
(Adobe)
(InDesign)
(4.0)
]
/OmitPlacedBitmaps false
/OmitPlacedEPS false
/OmitPlacedPDF false
/SimulateOverprint /Legacy
>>
<<
/AddBleedMarks false
/AddColorBars false
/AddCropMarks false
/AddPageInfo false
/AddRegMarks false
/ConvertColors /NoConversion
/DestinationProfileName ()
/DestinationProfileSelector /NA
/Downsample16BitImages true
/FlattenerPreset <<
/PresetSelector /MediumResolution
>>
/FormElements false
/GenerateStructure true
/IncludeBookmarks false
/IncludeHyperlinks false
/IncludeInteractive false
/IncludeLayers false
/IncludeProfiles true
/MultimediaHandling /UseObjectSettings
/Namespace [
(Adobe)
(CreativeSuite)
(2.0)
]
/PDFXOutputIntentProfileSelector /NA
/PreserveEditing true
/UntaggedCMYKHandling /LeaveUntagged
/UntaggedRGBHandling /LeaveUntagged
/UseDocumentBleed false
>>
]
>> setdistillerparams
<<
/HWResolution [2400 2400]
/PageSize [612.000 792.000]
>> setpagedevice
|