Декомпозиція простору під час кластеризації даних великої розмірності

Для зменшення часових затрат під час кластеризації даних великих розмірів запропоновано декомпозиційний підхід, що базується на розбитті простору згідно з координатними вісями гіперкубів. Відповідне керування алгоритмом дає змогу об'єднувати кластери - результати з підмножин - у кінцеві при нез...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: Мельник, Р.А., Тушницький, Р.Б.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Фізико-механічний інститут ім. Г.В. Карпенка НАН України 2009
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/16097
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Декомпозиція простору під час кластеризації даних великої розмірності / Р.А. Мельник, Р.Б. Тушницький // Відбір і оброб. інформації: Міжвід. зб. наук. пр. — 2009. — Вип. 31(107). — С. 65-72. — Бібліогр.: 7 назв. — укp.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Для зменшення часових затрат під час кластеризації даних великих розмірів запропоновано декомпозиційний підхід, що базується на розбитті простору згідно з координатними вісями гіперкубів. Відповідне керування алгоритмом дає змогу об'єднувати кластери - результати з підмножин - у кінцеві при незначних втратах точності. Як приклади практичних даних використані зображення із значними кількостями пікcелів. An approach to reduce algorithmic complexity for clustering of large-scale dataset is considered. The main idea is decomposition of item dataset and space by hypercube coordinates. To join clusters from subsets into the result clusters and to minimize the accuracy losses are the main tasks of the algorithm. Some visual patterns with large pixel numbers as test examples were investigated.
ISSN:0474-8662