Чебишовське наближення сумою полінома та логарифмічного виразу з ермітовим інтерполюванням

Встановлено умову існування чебишовського наближення сумою полінома та логарифмічного виразу з найменшою абсолютною похибкою та ермітовим інтерполюванням у крайніх точках відрізка. Запропоновано метод визначення параметрів такого чебишовського наближення. Установлено условие существования чебышевско...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Кибернетика и системный анализ
Дата:2018
Автори: Малачівський, П.С., Пізюр, Я.В., Андруник, В.А.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2018
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/161433
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Чебишовське наближення сумою полінома та логарифмічного виразу з ермітовим інтерполюванням / П.С. Малачівський, Я.В. Пізюр, В.А. Андруник // Кибернетика и системный анализ. — 2018. — Т. 54, № 5. — С. 93-99. — Бібліогр.: 9 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Встановлено умову існування чебишовського наближення сумою полінома та логарифмічного виразу з найменшою абсолютною похибкою та ермітовим інтерполюванням у крайніх точках відрізка. Запропоновано метод визначення параметрів такого чебишовського наближення. Установлено условие существования чебышевского приближения суммой полинома и логарифмического выражения с наименьшей абсолютной погрешностью и эрмитовым интерполированием в крайних точках отрезка. Предложен метод определения параметров такого чебышевского приближения. The authors establish the condition for the existence of the Chebyshev approximation by the sum of a polynomial and logarithmic expression with the smallest absolute error and Hermitian interpolation at the boundary points of an interval. The method is proposed for determining the parameters of such Chebyshev approximation.
ISSN:1019-5262