Горизонтальне та вертикальне масштабування методів машинного навчання

В роботі розглядаються основні етапи розв’язку задач машинного навчання (з учителем) розпізнаванню образів, а саме: управління навчальними виборками, навчання, розпізнавання. Обговорюється вплив феномену великих даних (BigData) на кожен з етапів, а також методи ефективної організації обчислень на ко...

Full description

Saved in:
Bibliographic Details
Published in:Проблеми програмування
Date:2019
Main Author: Білецький, Б.О.
Format: Article
Language:Ukrainian
Published: Інститут програмних систем НАН України 2019
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/161488
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Горизонтальне та вертикальне масштабування методів машинного навчання / Б.О. Білецький // Проблеми програмування. — 2019. — № 2. — С. 69-80. — Бібліогр.: 6 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-161488
record_format dspace
spelling Білецький, Б.О.
2019-12-10T21:40:19Z
2019-12-10T21:40:19Z
2019
Горизонтальне та вертикальне масштабування методів машинного навчання / Б.О. Білецький // Проблеми програмування. — 2019. — № 2. — С. 69-80. — Бібліогр.: 6 назв. — укр.
1727-4907
DOI: https://doi.org/10.15407/pp2019.02.069
https://nasplib.isofts.kiev.ua/handle/123456789/161488
004.62
В роботі розглядаються основні етапи розв’язку задач машинного навчання (з учителем) розпізнаванню образів, а саме: управління навчальними виборками, навчання, розпізнавання. Обговорюється вплив феномену великих даних (BigData) на кожен з етапів, а також методи ефективної організації обчислень на кожному з етапів при розв’язанні зазначених задач.
В работе рассматриваются основные этапы решения задачи обучения распознаванию образов, а именно: обработка и хранение обучающих данных, обучение распознаванию и распознавание. Обговаривается влияние феномена больших данных на каждый из этих этапов. Сравниваются различные подходы к эффективной организации вычислений на различных этапах. Первый раздел статьи посвящен определению понятия масштабирования, вводятся понятия горизонтального и вертикального масштабирования, обсуждаются их преимущества и недостатки. Рассматриваются некоторые ограничения при масштабировании на примере закона Амдала. Второй раздел статьи посвящен масштабированию хранилищ обучающих данных. Обговаривается подходы к масштабированию реляционных баз данных, и ограничения связанные с гарантиями ACID, которым удовлетворяют такие базы данных. Отдельно рассматриваются горизонтально масштабируемые нереляционные т. н. NoSQL базы данных. Приводится формулировка CAP-теоремы, как одного из фундаментальных ограничений при горизонтальном масштабировании таких баз данных. Третий раздел работы посвящен горизонтальному масштабированию вычислений на основе модели программирования MapReduce. Рассматриваются различные реализации этой модели программирования, такие как Hadoop и Spark, их строение и основные принципы работы. В четвертом разделе рассматриваются различные подходы к масштабированию методов машинного обучения. Приводится общая постановка задачи машинного обучения. На примере Байесовской процедуры обучения показывается, как модель программирования MapReduce применима для горизонтального масштабирования методов машинного обучения. Далее на основе глубоких нейронных сетей обговариваются методы обучения, не подлежащие горизонтальному масштабированию. Рассматриваются подходы к масштабированию таких методов при помощи графических процессоров (GPU) и модели программирования Tensor Flow.
The main stages of Machine Learning Pipelines are considered in the paper, such as: train data collection and storage, training and scoring. The effect of the Big Data phenomenon on each of the stages is discussed. Different approaches to efficient organization of computation are on each of the stage are evaluated. In the first part of the paper we introduce the notion of horizontal and vertical scalability together with corresponding cons and pros. We consider some limitations of scaling, such as Amdahl's law. In the second part of the paper we consider scalability of data storage routines. First we discuss relational databases and scalability limitations related to ACID guarantees, which such database satisfy. Then we consider horizontally scalable non-relational databases, so called NoSQL databases. We formulate CAP-theorem as a fundamental limitation of horizontally scalable databases. The third part of the paper is dedicated to scalability of computation based on the MapReduce programming model. We discuss some implementations of this programming model, such as Hadoop and Spark together with some basic principles which they are based on. In the fourth part of the article we consider various approaches towards scaling of Machine Learning methods. We give the general statement of Machine Learning problem. Then we show how MapReduce programming model can be applied for horizontal scaling of Machine Learning methods on the example of Bayessian pattern recognition procedure. On the example of Deep Neural Networks we discuss Machine Learning methods which are not horizontally scalable. Then we consider some approaches towards vertical scaling of such methods based on GPU’s and the TensorFlow programming model.
uk
Інститут програмних систем НАН України
Проблеми програмування
Експертні та інтелектуальні інформаційні системи
Горизонтальне та вертикальне масштабування методів машинного навчання
Горизонтальное и вертикальное масштабирование методов машинного обучения
Horizontal and vertical scalability of machine learning methods
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Горизонтальне та вертикальне масштабування методів машинного навчання
spellingShingle Горизонтальне та вертикальне масштабування методів машинного навчання
Білецький, Б.О.
Експертні та інтелектуальні інформаційні системи
title_short Горизонтальне та вертикальне масштабування методів машинного навчання
title_full Горизонтальне та вертикальне масштабування методів машинного навчання
title_fullStr Горизонтальне та вертикальне масштабування методів машинного навчання
title_full_unstemmed Горизонтальне та вертикальне масштабування методів машинного навчання
title_sort горизонтальне та вертикальне масштабування методів машинного навчання
author Білецький, Б.О.
author_facet Білецький, Б.О.
topic Експертні та інтелектуальні інформаційні системи
topic_facet Експертні та інтелектуальні інформаційні системи
publishDate 2019
language Ukrainian
container_title Проблеми програмування
publisher Інститут програмних систем НАН України
format Article
title_alt Горизонтальное и вертикальное масштабирование методов машинного обучения
Horizontal and vertical scalability of machine learning methods
description В роботі розглядаються основні етапи розв’язку задач машинного навчання (з учителем) розпізнаванню образів, а саме: управління навчальними виборками, навчання, розпізнавання. Обговорюється вплив феномену великих даних (BigData) на кожен з етапів, а також методи ефективної організації обчислень на кожному з етапів при розв’язанні зазначених задач. В работе рассматриваются основные этапы решения задачи обучения распознаванию образов, а именно: обработка и хранение обучающих данных, обучение распознаванию и распознавание. Обговаривается влияние феномена больших данных на каждый из этих этапов. Сравниваются различные подходы к эффективной организации вычислений на различных этапах. Первый раздел статьи посвящен определению понятия масштабирования, вводятся понятия горизонтального и вертикального масштабирования, обсуждаются их преимущества и недостатки. Рассматриваются некоторые ограничения при масштабировании на примере закона Амдала. Второй раздел статьи посвящен масштабированию хранилищ обучающих данных. Обговаривается подходы к масштабированию реляционных баз данных, и ограничения связанные с гарантиями ACID, которым удовлетворяют такие базы данных. Отдельно рассматриваются горизонтально масштабируемые нереляционные т. н. NoSQL базы данных. Приводится формулировка CAP-теоремы, как одного из фундаментальных ограничений при горизонтальном масштабировании таких баз данных. Третий раздел работы посвящен горизонтальному масштабированию вычислений на основе модели программирования MapReduce. Рассматриваются различные реализации этой модели программирования, такие как Hadoop и Spark, их строение и основные принципы работы. В четвертом разделе рассматриваются различные подходы к масштабированию методов машинного обучения. Приводится общая постановка задачи машинного обучения. На примере Байесовской процедуры обучения показывается, как модель программирования MapReduce применима для горизонтального масштабирования методов машинного обучения. Далее на основе глубоких нейронных сетей обговариваются методы обучения, не подлежащие горизонтальному масштабированию. Рассматриваются подходы к масштабированию таких методов при помощи графических процессоров (GPU) и модели программирования Tensor Flow. The main stages of Machine Learning Pipelines are considered in the paper, such as: train data collection and storage, training and scoring. The effect of the Big Data phenomenon on each of the stages is discussed. Different approaches to efficient organization of computation are on each of the stage are evaluated. In the first part of the paper we introduce the notion of horizontal and vertical scalability together with corresponding cons and pros. We consider some limitations of scaling, such as Amdahl's law. In the second part of the paper we consider scalability of data storage routines. First we discuss relational databases and scalability limitations related to ACID guarantees, which such database satisfy. Then we consider horizontally scalable non-relational databases, so called NoSQL databases. We formulate CAP-theorem as a fundamental limitation of horizontally scalable databases. The third part of the paper is dedicated to scalability of computation based on the MapReduce programming model. We discuss some implementations of this programming model, such as Hadoop and Spark together with some basic principles which they are based on. In the fourth part of the article we consider various approaches towards scaling of Machine Learning methods. We give the general statement of Machine Learning problem. Then we show how MapReduce programming model can be applied for horizontal scaling of Machine Learning methods on the example of Bayessian pattern recognition procedure. On the example of Deep Neural Networks we discuss Machine Learning methods which are not horizontally scalable. Then we consider some approaches towards vertical scaling of such methods based on GPU’s and the TensorFlow programming model.
issn 1727-4907
url https://nasplib.isofts.kiev.ua/handle/123456789/161488
citation_txt Горизонтальне та вертикальне масштабування методів машинного навчання / Б.О. Білецький // Проблеми програмування. — 2019. — № 2. — С. 69-80. — Бібліогр.: 6 назв. — укр.
work_keys_str_mv AT bílecʹkiibo gorizontalʹnetavertikalʹnemasštabuvannâmetodívmašinnogonavčannâ
AT bílecʹkiibo gorizontalʹnoeivertikalʹnoemasštabirovaniemetodovmašinnogoobučeniâ
AT bílecʹkiibo horizontalandverticalscalabilityofmachinelearningmethods
first_indexed 2025-12-07T19:24:31Z
last_indexed 2025-12-07T19:24:31Z
_version_ 1850878692259004416