Integer Norm for Difference Assessment of the Frame Elements Considering the White Balance

The proposed concept suggests a method, based on which a synthesis of an integer norm can be performed, which takes into account the white balance of the camera when performing the evaluation of the difference between the elements of an image. This idea is based on modifying the internal calculation...

Full description

Saved in:
Bibliographic Details
Date:2019
Main Authors: Ivashchenko, M.V., Okhrymchuk, D.D., Lyushenko, L.A.
Format: Article
Language:English
Published: Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України 2019
Series:Управляющие системы и машины
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/161658
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Integer Norm for Difference Assessment of the Frame Elements Considering the White Balance / M.V. Ivashchenko, D.D. Okhrymchuk, L.A. Lyushenko // Управляющие системы и машины. — 2019. — № 4. — С. 27-34. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-161658
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1616582025-02-10T01:16:12Z Integer Norm for Difference Assessment of the Frame Elements Considering the White Balance Концепція цілочислової норми оцінки різниці між елементами зображення з врахуванням балансу білого Концепция целочисленной нормы оценки разницы между элементами изображения с учетом баланса белого Ivashchenko, M.V. Okhrymchuk, D.D. Lyushenko, L.A. Intelligent Information Technologies and Systems The proposed concept suggests a method, based on which a synthesis of an integer norm can be performed, which takes into account the white balance of the camera when performing the evaluation of the difference between the elements of an image. This idea is based on modifying the internal calculations of the camera, aimed at assessing the colour of the image element, using the process of colour model reduction that is embedded inside the camera, to the colour model of the classical representation. The use of this approach provides a number of advantages within the framework of systems in which there is a solution of computer vision problems in terms of using both graphical processing and artificial intelligence. Мета. Метою даної статті є дослідження запропонованого підходу, на основі якого можливо виконати синтез цілочислової норми, що враховує баланс білого камери при розрахуванні оцінки різниці між елементами зображення. Методи. Камера автоматично налаштовує баланс білого відповідно до одного з режимів, встановлених за замовчуванням. Оцінка різниці між двома точками зображення здійснюється за рахунок виконання нормалізації. Як метод розрахунку використовується евклідова норма. Результати. Запропоновано підхід до нормалізації, що враховує коефіцієнти корекції балансу білого. Розрахунки виконуються з точки зору здійснення операцій з цілими значеннями, що надає можливість їх використання для безпосереднього розгортання всередині апаратної логіки пристроїв. Цей факт дозволяє знизити як загальну вартість ресурсів для виконуваних операцій, по відношенню до існуючої арифметики з плаваючою крапкою, так і зниження вимог до конфігурації датчиків. Цель. Целью данной статьи является исследование подхода к синтезу целочисленной нормы, которая учитывает баланс белого камеры при расчете оценки разницы между элементами изображения. Методы. Камера автоматически настраивает баланс белого в соответствии с одним из режимов, установленных по умолчанию. Оценка разницы между двумя точками изображения осуществляется путем выполнения нормализации. В качестве метода расчета используется евклидова норма. Результаты. Предложен подход нормализации, учитывающий коэффициенты коррекции баланса белого. Расчеты выполняются исходя из операций с целыми значениями, что дает возможность использования их для непосредственного развертывания внутри аппаратной логики устройств. Это позволяет снизить как общую стоимость ресурсов для выполняемых операций, по отношению к существующей арифметике с плавающей точкой, так и упростить требования к конфигурации датчиков. 2019 Article Integer Norm for Difference Assessment of the Frame Elements Considering the White Balance / M.V. Ivashchenko, D.D. Okhrymchuk, L.A. Lyushenko // Управляющие системы и машины. — 2019. — № 4. — С. 27-34. — Бібліогр.: 7 назв. — англ. 0130-5395 DOI: https://doi.org/10.15407/csc.2019.04.027 https://nasplib.isofts.kiev.ua/handle/123456789/161658 004.4 451 en Управляющие системы и машины application/pdf Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Intelligent Information Technologies and Systems
Intelligent Information Technologies and Systems
spellingShingle Intelligent Information Technologies and Systems
Intelligent Information Technologies and Systems
Ivashchenko, M.V.
Okhrymchuk, D.D.
Lyushenko, L.A.
Integer Norm for Difference Assessment of the Frame Elements Considering the White Balance
Управляющие системы и машины
description The proposed concept suggests a method, based on which a synthesis of an integer norm can be performed, which takes into account the white balance of the camera when performing the evaluation of the difference between the elements of an image. This idea is based on modifying the internal calculations of the camera, aimed at assessing the colour of the image element, using the process of colour model reduction that is embedded inside the camera, to the colour model of the classical representation. The use of this approach provides a number of advantages within the framework of systems in which there is a solution of computer vision problems in terms of using both graphical processing and artificial intelligence.
format Article
author Ivashchenko, M.V.
Okhrymchuk, D.D.
Lyushenko, L.A.
author_facet Ivashchenko, M.V.
Okhrymchuk, D.D.
Lyushenko, L.A.
author_sort Ivashchenko, M.V.
title Integer Norm for Difference Assessment of the Frame Elements Considering the White Balance
title_short Integer Norm for Difference Assessment of the Frame Elements Considering the White Balance
title_full Integer Norm for Difference Assessment of the Frame Elements Considering the White Balance
title_fullStr Integer Norm for Difference Assessment of the Frame Elements Considering the White Balance
title_full_unstemmed Integer Norm for Difference Assessment of the Frame Elements Considering the White Balance
title_sort integer norm for difference assessment of the frame elements considering the white balance
publisher Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України
publishDate 2019
topic_facet Intelligent Information Technologies and Systems
url https://nasplib.isofts.kiev.ua/handle/123456789/161658
citation_txt Integer Norm for Difference Assessment of the Frame Elements Considering the White Balance / M.V. Ivashchenko, D.D. Okhrymchuk, L.A. Lyushenko // Управляющие системы и машины. — 2019. — № 4. — С. 27-34. — Бібліогр.: 7 назв. — англ.
series Управляющие системы и машины
work_keys_str_mv AT ivashchenkomv integernormfordifferenceassessmentoftheframeelementsconsideringthewhitebalance
AT okhrymchukdd integernormfordifferenceassessmentoftheframeelementsconsideringthewhitebalance
AT lyushenkola integernormfordifferenceassessmentoftheframeelementsconsideringthewhitebalance
AT ivashchenkomv koncepcíâcíločislovoínormiocínkiríznicímíželementamizobražennâzvrahuvannâmbalansubílogo
AT okhrymchukdd koncepcíâcíločislovoínormiocínkiríznicímíželementamizobražennâzvrahuvannâmbalansubílogo
AT lyushenkola koncepcíâcíločislovoínormiocínkiríznicímíželementamizobražennâzvrahuvannâmbalansubílogo
AT ivashchenkomv koncepciâceločislennoinormyocenkiraznicymežduélementamiizobraženiâsučetombalansabelogo
AT okhrymchukdd koncepciâceločislennoinormyocenkiraznicymežduélementamiizobraženiâsučetombalansabelogo
AT lyushenkola koncepciâceločislennoinormyocenkiraznicymežduélementamiizobraženiâsučetombalansabelogo
first_indexed 2025-12-02T10:30:45Z
last_indexed 2025-12-02T10:30:45Z
_version_ 1850392125526507520
fulltext ISSN 2706-8145, Control Systems and Computers, 2019, № 4 27 DOI https://doi.org/10.15407/usim.2019.04.027 UDC 004.4 451 M.V. IVASHCHENKO, Student of the Faculty of Applied Mathematics, National Technical University of Ukraine "Igor Sikorsky Kyiv PolitechnicI nstitute", 03056, Peremohy Ave, 37, Kyiv, Ukraine, mivaschenko_51@lll.kpi.ua D.D. OKHRYMCHUK, Student of the Faculty of Applied Mathematics, National Technical University of Ukraine "Igor Sikorsky Kyiv PolitechnicI nstitute", 03056, Peremohy Ave, 37, Kyiv, Ukraine, den5096@gmail.com L.A. LYUSHENKO, PhD (Eng.), Senior Lecturer, National Technical University of Ukraine "Igor Sikorsky Kyiv Politechnic Institute", 03056, Peremohy Ave, 37, Kyiv, Ukraine, lyushenkol@gmail. com INTEGER NORM FOR DIFFERENCE ASSESSMENT OF THE FRAME ELEMENTS CONSIDERING THE WHITE BALANCE The proposed concept suggests a method, based on which a synthesis of an integer norm can be performed, which takes into ac- count the white balance of the camera when performing the evaluation of the difference between the elements of an image. This idea is based on modifying the internal calculations of the camera, aimed at assessing the colour of the element of the image, using the process of colour model reduction that is embedded inside the camera, to the colour model of the classical representation. The use of this approach provides a number of advantages within the framework of systems in which there is a solution of computer vision problems in terms of using both graphical processing and artificial intelligence. Keywords: computer vision, white balance correction, colour sensors, colour model, reference colours, image point norm. Introduction Human organism possesses the ability to see, de- termine and understand the environment using the visual information. The same idea was also formed and implemented in the computer vision technolo- gies. Such technologies are usually used in surveil- lance systems, robotics, tracking mobile applica- tions, engineering reliability and quality control etc. In every computer vision system, it is needed to track how the image has changed (or how the points of the image have changed). Computer vision systemsbuilt over modern CCD CMOS-sensors, allow adjust automatically the pa- rameters of a frame according to the surrounding illumination, its position changesin space, integral characteristics of the frame, and other parameters that can indirectly influence the raster quality. The increase of the computational power in digi- tal signal processorsbuilt in the sensor systems of computer vision allows on the one hand to signifi- cantly improve consumer and metrological charac- teristics of the finished device without tightening the technological requirements, but on the other hand requires specific processing algorithms that are attached to the architecture and scheme pa- rameters of the specific device. In this paper are presented the results of the re- search based on the task of forming the difference assessment between two elements of a raster frame, that allows the conversion of the incoming data M.V. Ivashchenko, D.D. Okhrymchuk, L.A. Lyushenko 28 ISSN 2706-8145, Системи керування та комп'ютери, 2019, № 4 and the results of the comparison on hypothetically arbitrary bit grids distributed to a set of individual raster points representation ways, including colour schemes and device configuration parameters. Nowadays computer vision is developing in a wide variety of fields, one of which is machine learning, specifically deep learning that manages the high-level data composed into the hierarchi- cal structures. It improves the abilities of chip- programming using relatively cheap computational equipment [1]. A distinctive feature of computer vision engi- neering and technology is the usage of adaptive al- gorithms and learning systems that are the basis for the practical computer vision usage in any valuable automation tasks. It leads to active implementation and develop- ment of the deep learning algorithms, weak artificial intelligence in terms of configuration and learning process, artificial intelligence for the recognition and classification tasks. The mentioned techniques that are used for solving the issues of signals digi- tal processing in machine vision allow the active usage of phase-frequency and adaptive filtering, spectral analysis methods, wavelet transformation in the early stages of reading information from the matrix photo detectors on the programming and hardware levels. It also allows to reduce signifi- cantly the computational costs of image processing algorithms and distribute the processing between all links of machine vision chains. Nevertheless, all the tasks described above are re- duced to the basic task of computer vision, namely: comparison of image points or series of images. This process is implemented in terms of work with the colour models. Each colour model defines the way of a point’s colour representation and the way of its encoding inside a device. The difference assessment between two elements of a frame is a very important block of all image processing algorithms. However, nowadays the most of the norms that are defined over the colour spaces, perform the operations with the float va- lues. When implementing algorithms for calcula- ting the norm into the hardware logic of sensors, the usage of float arithmetic is unacceptable as it significantly increases the computational costs and also the hardware requirements of the sensors cau- sing a great reduce in the performance level of the norm computational algorithms in terms of impos- sibility of their paralleling. Thus, the development of integer norms over the colour spaces will allow to organize an efficient ima-ge processing using the means of a device. In this article RGB colour model is reviewed. This model applies the additive method of colour processing (a colour is obtained by adding to black). It is known that any colour can be represented as a combination of three colours: red (R), white (W), and blue (B). These colours are also known as the reference colours and are specified by values from 0 to 255. RGB colour model allows the usage of ima-ge points colour identification of implement- ing the three-channel colour representation. It al- lows to perform the image normalization process exclu-ding the set of operations that are specific for and are defined over the float arithmetic. Let us review the described approach. Problem Description Let there be a raster rectangular image of the reso- lution X X W H C, where W is the number of pix- els in the width of the image, H — the number of pixels in the height of the image, C — the colour depth of the image (the number of bits used for contacting the representation of a colour in terms of a pixel encoding process). The position of every point of the image is uniquely determined by a pair of coordinates ( ); ,X Y where 1.. , 1.. .X W Y H= = In this case the content of every point is represented by a colour that is encoded by the device. Let there be a point of animage that is determined by a pair ( )1 1; ,X Y where 1 11.. , 1.. .X W Y H= = It is needed to build an assessment, how this point dif- fers from another point of the same image with a pair of coordinates ( )2 2; ,X Y where 2 21.. , 1.. .X W Y H= = This task can be solved by finding the distance bet- ween the points on the colour surface. The content of a point of an image can be given as a linear combination of a colour model reference points that is assigned by a polygon on the colour surface. Thus, in general the difference between the two colors is to be defined according to the distance Integer Norm for Difference Assessment of the Frame Elements Considering the White Balance ISSN 2706-8145, Control Systems and Computers, 2019, № 4 29 between the colours. This distance can be comput- ed as the length of a segment which endpoints are the positions of the colours on the surface. Let us review the situation where each of the de- vices makes certain adjustments to the immediate appearance of the colour model when performing white balance correction by deforming it. As a re- sult, both the appearance of the polygon that limits the area of the colour plane and determines the in- ternal colour scheme of the device, and the appea- rance of the surface that describes the colour gamut can change. While image processing algorithms take into account only some standards [2] or use classical representations of colour schemes, mat- ching them with the results obtained from the ca- mera, it makes sense to perform the final distance calculations considering the changes of the colour model due to the camera's white balance correc- tions before obtaining every next frame. As a result, the colour channel component values will be con- verted according to the white balance factors cal- culated after shooting the scene, and subsequently represented in traditional RGB color model. Then the final task of finding the difference bet- ween the two points of an image can be decreased to the following actions: performing the reduction of colour values ob- tained from the device to the values of the original color model; computing the distance between the points by calculating the norm (the problem can be set as a synthesis of a different type of a norm in terms of working with integer values and consideration of the white balance corrections). Speaking of the problem of the device colour scheme structure, the solution is to use the refe- rence colours system conversion and the resulting change in the appearance of the colour surface, as well as the color gamut. This step can be performed as a precomputed set of operations. Related Works. Colour Conversion The process of manufacturing, testing and auto- mated adjustment of sensors involves the rejection and calibration of individual light-sensitive ele- ments. The result of reading the image with some accuracy provides a representation of colours in a vector form, taking into account the calibrating parameters. Let us review the models of obtaining the image element data according to the results of measure- ments in individual photosensors. 1. Matrix Method This method is used if the assessment of several co- lours is needed. The method is based on the matrix equation: the values ( ); ;X Y Z represent the colours in the source colour model, the values ( ); ;R G B are the representation of the digital data of the colour sensor. The conversion matrix C is based on the output signals of the reference colour obtained during the calibration process. After the matrix coefficients are defined the values ( ); ;X Y Z can be computed from the conversion of the ( ); ;R G B sensor values. (1) 2. Table Method This method is used if it is needed to define several colours simultaneously. The first step is to determine how important the brightness is. For each colour the sensor uses brightness information that was ob- tained during calibration from the reference colours set. If the brightness information is not important, then a specifically selected colour channel is used for the search of the ratios between the reference co- lors obtained during calibration and the determined colour (taken as the basis for all measurement sets). The brightness matters: (2) The bright ness does not matter: 2 2 , R BR Bu ur r G G G Gu r u r ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟− − − ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ (3) where ( )1 1 1, , R G B are the coordinates values of the investigated colour, ( )0 0 0, , R G B — the coordinates values of the reference colour. The colours formed by the above methods lead to an incorrect result in terms of light conditions, ( ) ( ) ( )2 2 2 1 0 1 0 1 0 .R R G G B B− ⋅ − ⋅ − 11 12 13 21 22 23 31 32 33 C C CX R Y C C C G Z BC C C ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟= ⋅ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ M.V. Ivashchenko, D.D. Okhrymchuk, L.A. Lyushenko 30 ISSN 2706-8145, Системи керування та комп'ютери, 2019, № 4 the sensor temperature and the sampling frequency changes. Attempting to adjust the calibration data contributes to the accumulation of errors and pro- cessing algorithms complication [3]. Related Works. White Balance Correction Algorithms There are different approaches of white balance correction during the shooting of a scene (or sce- nes) using a device. The following section describes the basic versions of such algorithms. 1. Gray World Theory This method provides automatic white balance cor- rection by calculating the values ( ); ;avg avg avgBR G , such as ,avg avg avgBR G= = and is based on the fact that any scene can be converted into the gray chan- nel. The coefficients are used for colour correction of the image points are obtained from the calcula- tions of the ratios between the ( ); ;avg avg avgBR G va- lues and the average value of the green channel. ,avg avg avgBR G= = max max , corrR G R corrB= = max max , 1.G B corrG= = (4) 2. Retinex Theory Another possible method was produced by Edwin Land [4].This method is based on the principle that the white colour is a combination of three maximum values of the colour channels as it transmits the ma- ximum possible level of signals into every channel. This method forms the white colour according to the component values of the brightest point of the image. At the same time, white balance correc- tion factors can be obtained in two different ways: max max max max, , 1 , corr R G R corr B G B corr G= = = max max, , corr R R R corr B B B= = max .corr G G G= (5) 3. Standard Deviation-Weighted Gray World Standard Deviation-Weighted Gray World method extends the representation of the Gray world method and was suggested by Lam [5].The ima- ge is divided into a certain number of blocks. For each block the standard deviations and values ( )μ ; μ ; μR G B are calculated that correspond to the colour channels , , R G B.The value for each channel is computed using the weight coefficients for every block. For the k-th block an average deviation of the green channel can be evaluated using the for- mula: 1 1 σ ( ) μ ( ). σ ( ) p G Gp k Gi kStd Avg G k i= = = ⋅∑ ∑ (6) Based on the obtained values the correction fac- tors for each colour channel are evaluated: , 3 Std Avg R Std Avg G Stv Avg Bcorr G Std Avg G + + = ⋅ , 3 Std Avg R Std Avg G Stv Avg Bcorr R Std Avg R + + = ⋅ (7) . 3 Std Avg R Std Avg G Stv Avg Bcorr B Std Avg B + + = ⋅ 4. White Patches in YCbCr Colour Space This method was introduced by Wang, Chen and Fuh [6]. The image is represented in the YCbCr colour space. White balance correction factors can be obtained from the following expressions: max max max, , , avg avg avg Y Y Ycorr R corr G corr B R G B = = = (8) where maxY — maximum intensity value in a given colour space [7]. 5. White Balance Automated Correction Process In the process of shooting, the device (a camera) is able to change the way of white balance correction (this effect is achieved through a number of modes built in to the algorithms of the camera). The main advantage of this approach is its sim- plicity of implementation, as well as optimality in terms of the device usage. However, when shooting in RAW format, or solving computer vision issues aimed at searching the changes in the state of the image, and performing several images or several points of a specific image comparison in standard custom formats, such white balance correction implementation does not work properly (the white balance correction factors do not tend to unity). As a part of the image points representation comparison, such white balance adjustments can affect the loss of a certain number of colours, lea- ding to failures in the accuracy of colour compo- nents calculations which leads to an incorrect com- Integer Norm for Difference Assessment of the Frame Elements Considering the White Balance ISSN 2706-8145, Control Systems and Computers, 2019, № 4 31 parison result. As a result, the computation of the distance between the representations of points on the colour surface that is performed by the means of the normalization process will return incorrect values, since the camera’s white balance correc- tion for the selected scene (selected image) was not taken into account. Proposed Approach Let us review the process of assessing the differen- ce between two points of the image working in terms of the issue described in paragraph 2 of this paper. The camera automatically adjusts the white balance in accordance with one of the modes set in the camera by default. The assessment of the diffe- rence between two points of the image is performed by normalization. The Euclidean norm is used as the calculation method. The incoming data for the calculation of the norm is represented by the colour values of the points obtained from the camera. At the same time, the obtained values are converted from the colour space of the camera to the traditional colour space by considering the white balance correction fac- tors that were used during the image capture. This conversion allows to transform a polygon that is the colour representation of the camera on the surface into a polygon that is representation of the classical RGB model. This conversion uses the matrix method and has the following structure: 1 11 12 13 1 2 1 21 22 23 2 3 2 31 32 33 3 3 , m m m m x C C C C x y C C C C x y C C C C y x ⎛ ⎞ ⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⋅ =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟ ⎝ ⎠ � � � � (9) where matrix С is the matrix of conversion, that considers the white balance correction in terms of transition to the colour model RGB traditional look, vector x — point representation in the camera color space, vector у — the resulting representation of a point in the RGB color space. The calculations are performed in terms of working with integer values, and also can be used for direct implementation into the hardware logic of devices. This fact makes it possible to reduce both the overall cost of resources for the perfor- ming operations, as compared to the existing float arithmetic, and the requirements for the sensor configuration, thereby increasing the overall level of performance. Thus, we obtain a complex normalization algo- rithm that takes into account white balance correc- tion factors, and can be used both in the devices that perform the shooting and in computers for the organization of computer vision systems. Conclusion In the absence of the possibility to calibrate sen- sors directly during the use of the device, existing methods of colour identification are not as efficient as possible in terms of working with the computer vision issues. This is due to the fact that each of the devices (or rather, each of the sensors of this device) "receives" the corresponding section of the colour model, which is deformed relative to the similar standardized section allocated to the RGB model. In addition, in the process of shooting the device performs white balance adjustment based on the parameters set for it by default (as a set of automatic correction modes). On the basis of such parameters as the scene illumination, the position of the shot object, the position of the device rela- tive to the scene, – for each of the frames its own correction is formed which entails another defor- mation of the section of the colour surface corre- sponding to the sensors of the device. As a result, the accuracy of image point color representation assessment analysis drops significantly, making it impossible to apply standard methods of compu- ting the differences between two pixels by perfor- ming normalization since the actual positions of their representations on the colour surface differ from the positions of the representations identi- fied by the device. These facts are also supported by the situation where the implementation of the float arithmetic in the algorithms for calculating the norm in the hardware logic of sensors, is unac- ceptable since it significantly increases the overall costs not only for the norm computation, but also increases the level of requirements for the sensor M.V. Ivashchenko, D.D. Okhrymchuk, L.A. Lyushenko 32 ISSN 2706-8145, Системи керування та комп'ютери, 2019, № 4 REFERENCES 1. Sinha, R.K., Pandey, R., Pattnaik, R., 2017. “Deep Learning for Computer Vision Tasks: A review”. Int. Conf. on Intel- ligent Computing and Control (I2C2), pp. 1–5, https://arxiv.org/ftp/arxiv/papers/1804/1804.03928.pdf. 2. Stokes, M., Anderson, M., Chandrasekar, S., Motta, R., 1996. A Standard Default Color Space for the Internet — sRGB. [online] Available at: <https://www.w3.org/Graphics/Color/sRGB.html> [Accessed 15 Apr. 2019]. 3. Precise measurements are vital to colour sensor sensitivity”. EET India. [online] Available at: <https://www.embedded. com/design/mcus-processors-and-socs/4007122/Precise-measurements-are-the-key-to-color-sensor-sensitivity> [Accessed 2 Feb. 2019]. 4. Land, E.H., McCann, J.J., 1971. “Lightness and Retinex Theory”. Journal of the Optical Society of America, 61(1), pp. 1–11. 5. Lam, Hong-Kwai, Au, Oscar C., Wong, Chi-Wah, 2004. “Automatic white balancing using standard deviation of RGB components”. ISCAS ’04, DOI: 10.1109/ISCAS.2004.1328898. 6. Weng, Ching-Chih, Chen, Homer, Fuh, Chiou-Shann, 2005. “A Novel Automatic White Patch Method for Digital Cam- eras”. ISCAS 2005, DOI: 10.1109/ISCAS.2005.1465458. 7. Zapryanov, G., Nikolova, I., 2012. Automatic White Balance Algorithms for Digital Still Cameras – a Comparative Study. Information Technologies and Control, 1, pp. 16-22. Received 18.06.2019 equipment, causing a significant drop in perfor- mance of normalizing algorithms due to the im- possibility of their parallelization. The approach proposed in the article, aims to eliminate these drawbacks. Colours comparison in terms of using a standardized colour model (gamut) allows not only to obtain the same results regardless of the applied device, but also makes it possible to form a comparative analysis of the devices. This ef- fect is achieved by the means of the data conversion that is obtained from the camera after performing automatic white balance correction to the tradi- tional colour model. This allows to increase the ac- curacy of measurements in solving computer vision issues aimed at comparing points of one image or at a full comparison of two or a series of images. The algorithm can be wielded both in devices that shoot, and in computers that are used to per- form image processing operations in computer vi- sion systems. Integer Norm for Difference Assessment of the Frame Elements Considering the White Balance ISSN 2706-8145, Control Systems and Computers, 2019, № 4 33 М.В. Іващенко, студент, факультет прикладної математики, Національний техн. ун-т України “Київський політехнічний інститут імені Ігоря Сікорського” (НТУУ «КПІ ім. І. Сікорського»), просп. Перемоги, 37, Київ, 03056, Україна, mivaschenko_51@lll.kpi.ua Д.Д. Охримчук, студент, факультет прикладної математики, НТУУ «КПІ ім. І. Сікорського», просп. Перемоги, 37, Київ, 03056, Україна, den5096@gmail.com Л.А. Люшенко, кандидат технічних наук, старший викладач, факультет прикладної математики, НТУУ «КПІ ім. І. Сікорського», просп. Перемоги, 37, Київ, 03056, Україна, lyushenkol@gmail. com КОНЦЕПЦІЯ ЦІЛОЧИСЛОВОЇ НОРМИ ОЦІНКИ РІЗНИЦІ МІЖ ЕЛЕМЕНТАМИ ЗОБРАЖЕННЯ З ВРАХУВАННЯМ БАЛАНСУ БІЛОГО Вступ. Оцінка різниці між двома елементами зображення є важливим блоком всіх алгоритмів графічної обробки. Проте на сьогоднішній день більшість норм, які визначаються за колірними просторами, виконують операції з плаваючою точкою і без врахування внутрішньої структури колірної моделі камери. Мета. Метою даної статті є дослідження запропонованого підходу, на основі якого можливо виконати синтез цілочислової норми, що враховує баланс білого камери при розрахуванні оцінки різниці між елементами зобра- ження. Методи. Камера автоматично налаштовує баланс білого відповідно до одного з режимів, встановлених за за- мовчуванням. Оцінка різниці між двома точками зображення здійснюється за рахунок виконання нормалізації. Як метод розрахунку використовується евклідова норма. Результати. Запропоновано підхід до нормалізації, що враховує коефіцієнти корекції балансу білого. Розрахун- ки виконуються з точки зору здійснення операцій з цілими значеннями, що надає можливість їх використання для безпосереднього розгортання всередині апаратної логіки пристроїв. Цей факт дозволяє знизити як загальну вартість ресурсів для виконуваних операцій, по відношенню до існуючої арифметики з плаваючою крапкою, так і зниження вимог до конфігурації датчиків. Запропонований підхід дозволяє підвищити ефективність вимірювань при вирішенні задач комп'ютерного зору, спрямованих на порівняння точок одного зображення або при повному порівнянні відповідних елементів двох або серії зображень. Висновки. Запропонований у статті підхід спрямований на усунення недоліків сучасних систем, що викорис- товують оцінку кольорів. Алгоритм може використовуватися як в пристроях, які здійснюють відеозйомку, так і в комп'ютерах, які використовуються для виконання операцій обробки зображень в системах комп'ютерного зору. Ключові слова: комп’ютерний зір, корекція балансу білого, датчики кольору, колірна модель, опорні кольори, норма точки зображення. M.V. Ivashchenko, D.D. Okhrymchuk, L.A. Lyushenko 34 ISSN 2706-8145, Системи керування та комп'ютери, 2019, № 4 М.В. Иващенко, студент, факультет прикладной математики, Национальный техн. ун-т Украины «Киевский политехнический институт имени Игоря Сикорского» (НТУУ «КПИ им. И. Сикорского»), просп. Победы, 37, Киев, 03056, Украина, mivaschenko_51@lll.kpi.ua Д.Д. Охримчук, студент, факультет прикладной математики, НТУУ «КПИ им. И. Сикорского», просп. Победы, 37, Киев, 03056, Украина, den5096@gmail.com Л.А. Люшенко, кандидат технических наук, старший преподаватель, кафедра программного обеспечения компьютерных систем, факультет прикладной математики (ПОКС ФПМ), НТУУ «КПИ им. И. Сикорского», просп. Победы, 37, Киев, 03056, Украина, lyushenkol@gmail. com КОНЦЕПЦИЯ ЦЕЛОЧИСЛЕННОЙ НОРМЫ ОЦЕНКИ РАЗНИЦЫ МЕЖДУ ЭЛЕМЕНТАМИ ИЗОБРАЖЕНИЯ С УЧЕТОМ БАЛАНСА БЕЛОГО Введение. Оценка разницы между двумя элементами изображения является важным блоком всех алгоритмов графической обработки. Однако на сегодняшний день большинство норм, которые определяются по цветовым пространствам, выполняют операции с плавающей точкой и без учета внутренней структуры цветовой модели камеры. Цель. Целью данной статьи является исследование подхода к синтезу целочисленной нормы, которая учитывает баланс белого камеры при расчете оценки разницы между элементами изображения. Методы. Камера автоматически настраивает баланс белого в соответствии с одним из режимов, установленных по умолчанию. Оценка разницы между двумя точками изображения осуществляется путем выполнения нормали- зации. В качестве метода расчета используется евклидова норма. Результаты. Предложен подход нормализации, учитывающий коэффициенты коррекции баланса белого. Расчеты выполняются исходя из операций с целыми значениями, что дает возможность использования их для непосредственного развертывания внутри аппаратной логики устройств. Это позволяет снизить как общую сто- имость ресурсов для выполняемых операций, по отношению к существующей арифметике с плавающей точкой, так и упростить требования к конфигурации датчиков. Это повышает эффективность измерений при решении задач компьютерного зрения, направленных на срав- нение точек одного изображения или при полном сравнении соответствующих элементов двух или серии изобра- жений. Выводы. Предложенный в статье подход направлен на устранение недостатков современных систем, исполь- зующих оценку цветов. Алгоритм может использоваться как в устройствах, видеосъемки, так и в компьютерах, используемых для выполнения операций обработки изображений в системах компьютерного зрения. Ключевые слова: компьютерное зрение, коррекция баланса белого, датчики цвета, цветовая модель, опорные цвета, норма точки изображения.