Метод решения сингулярной динамической задачи в форме интегрального уравнения
Интегральные уравнения Вольтерра второго рода являются универсальной математической моделью в задачах идентификации и компьютерного моделирования. При этом сингулярность этих уравнений значительно затрудняет решение данных задач. Для решения этой проблемы используются алгоритмы регуляризации некорре...
Збережено в:
| Опубліковано в: : | Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки |
|---|---|
| Дата: | 2018 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | Russian |
| Опубліковано: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2018
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/162216 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Метод решения сингулярной динамической задачи в форме интегрального уравнения / А.Ф. Верлань, Ю.О. Фуртат // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2018. — Вип. 18. — С. 31-38. — Бібліогр.: 3 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Интегральные уравнения Вольтерра второго рода являются универсальной математической моделью в задачах идентификации и компьютерного моделирования. При этом сингулярность этих уравнений значительно затрудняет решение данных задач. Для решения этой проблемы используются алгоритмы регуляризации некорректных задач. Параметр регуляризации при этом может быть определен различными способами, в частности, способом модельных примеров. В статье также показан способ решения полученного приближенного выражения из алгоритма регуляризации с применением квадратурных формул.
Volterra integral equations of the second kind are a universal mathematical model used in problems of identification and computer simulation. At the same time, the singularity of these equations makes it difficult to solve these problems. To solve this problem, regularization algorithms for ill-posed problems are used. In this case, the regularization parameter can be determined in various ways, in particular, by the method of model examples. The article also shows how to solve the obtained approximate expression from the regularization algorithm using quadrature formulas.
|
|---|---|
| ISSN: | 2308-5878 |