Застосування методу квазіфункцій Гріна-Рвачова для побудови двобічних наближень до розв'язку задачі Діріхле для нелінійного рівняння теплопровідності

У роботі розглянуто задачу Діріхле для рівняння теплопровідності зі степенево залежним від температури коефіцієнтом теплопровідності та нелінійною функцією потужності теплових джерел. Додатний розв’язок розглядуваної задачі запропоновано знаходити, використовуючи метод двобічних наближень, побудован...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
Дата:2018
Автор: Сидоров, М.В.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/162227
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Застосування методу квазіфункцій Гріна-Рвачова для побудови двобічних наближень до розв'язку задачі Діріхле для нелінійного рівняння теплопровідності / М.В. Сидоров // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2018. — Вип. 18. — С. 146-161. — Бібліогр.: 16 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-162227
record_format dspace
spelling Сидоров, М.В.
2020-01-04T20:11:32Z
2020-01-04T20:11:32Z
2018
Застосування методу квазіфункцій Гріна-Рвачова для побудови двобічних наближень до розв'язку задачі Діріхле для нелінійного рівняння теплопровідності / М.В. Сидоров // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2018. — Вип. 18. — С. 146-161. — Бібліогр.: 16 назв. — укр.
2308-5878
DOI: 10.32626/2308-5878.2018-18.146-161
https://nasplib.isofts.kiev.ua/handle/123456789/162227
517.988:519.632
У роботі розглянуто задачу Діріхле для рівняння теплопровідності зі степенево залежним від температури коефіцієнтом теплопровідності та нелінійною функцією потужності теплових джерел. Додатний розв’язок розглядуваної задачі запропоновано знаходити, використовуючи метод двобічних наближень, побудований на основі застосування методу квазіфункцій Гріна-Рвачова. Для цього було зроблено заміну невідомої функції з метою отримати нелінійну задачу для рівняння з оператором Лапласа. Ця задача за допомогою квазіфункції Гріна-Рвачова була замінена еквівалентним інтегральним рівняння Урисона. Дослідження цього рівняння було проведено методами нелінійного аналізу у напівупорядкованих просторах, зокрема, використовуючи теорію гетеротонних операторів В. І. Опойцева.
In this paper, the Dirichlet problem for the heat equation with a nonlinear function of power of heat sources and a heat conductivity coefficient with power law dependence on temperature, is considered. To find a positive solution of the problem under consideration it is proposed the using of the two-sided approximations method, constructed on the basis of the application of the Green-Rvachev’s quasifunction method. For this, the unknown function was replaced in order to obtain a nonlinear problem for the equation with the Laplace operator. This problem was replaced by the equivalent Uryson integral equation using the Green-Rvachev’s quasi-function. The investigation of this equation was carried out by methods of nonlinear analysis in semi-ordered spaces, in particular, using the theory of heterotone operators by V.I. Opoǐcev.
uk
Інститут кібернетики ім. В.М. Глушкова НАН України
Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
Застосування методу квазіфункцій Гріна-Рвачова для побудови двобічних наближень до розв'язку задачі Діріхле для нелінійного рівняння теплопровідності
The application of the Green-Rvachev quasifunction method for constructing two-sided approximations to the solution of the Dirichlet problem for a nonlinear heat equation
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Застосування методу квазіфункцій Гріна-Рвачова для побудови двобічних наближень до розв'язку задачі Діріхле для нелінійного рівняння теплопровідності
spellingShingle Застосування методу квазіфункцій Гріна-Рвачова для побудови двобічних наближень до розв'язку задачі Діріхле для нелінійного рівняння теплопровідності
Сидоров, М.В.
title_short Застосування методу квазіфункцій Гріна-Рвачова для побудови двобічних наближень до розв'язку задачі Діріхле для нелінійного рівняння теплопровідності
title_full Застосування методу квазіфункцій Гріна-Рвачова для побудови двобічних наближень до розв'язку задачі Діріхле для нелінійного рівняння теплопровідності
title_fullStr Застосування методу квазіфункцій Гріна-Рвачова для побудови двобічних наближень до розв'язку задачі Діріхле для нелінійного рівняння теплопровідності
title_full_unstemmed Застосування методу квазіфункцій Гріна-Рвачова для побудови двобічних наближень до розв'язку задачі Діріхле для нелінійного рівняння теплопровідності
title_sort застосування методу квазіфункцій гріна-рвачова для побудови двобічних наближень до розв'язку задачі діріхле для нелінійного рівняння теплопровідності
author Сидоров, М.В.
author_facet Сидоров, М.В.
publishDate 2018
language Ukrainian
container_title Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
publisher Інститут кібернетики ім. В.М. Глушкова НАН України
format Article
title_alt The application of the Green-Rvachev quasifunction method for constructing two-sided approximations to the solution of the Dirichlet problem for a nonlinear heat equation
description У роботі розглянуто задачу Діріхле для рівняння теплопровідності зі степенево залежним від температури коефіцієнтом теплопровідності та нелінійною функцією потужності теплових джерел. Додатний розв’язок розглядуваної задачі запропоновано знаходити, використовуючи метод двобічних наближень, побудований на основі застосування методу квазіфункцій Гріна-Рвачова. Для цього було зроблено заміну невідомої функції з метою отримати нелінійну задачу для рівняння з оператором Лапласа. Ця задача за допомогою квазіфункції Гріна-Рвачова була замінена еквівалентним інтегральним рівняння Урисона. Дослідження цього рівняння було проведено методами нелінійного аналізу у напівупорядкованих просторах, зокрема, використовуючи теорію гетеротонних операторів В. І. Опойцева. In this paper, the Dirichlet problem for the heat equation with a nonlinear function of power of heat sources and a heat conductivity coefficient with power law dependence on temperature, is considered. To find a positive solution of the problem under consideration it is proposed the using of the two-sided approximations method, constructed on the basis of the application of the Green-Rvachev’s quasifunction method. For this, the unknown function was replaced in order to obtain a nonlinear problem for the equation with the Laplace operator. This problem was replaced by the equivalent Uryson integral equation using the Green-Rvachev’s quasi-function. The investigation of this equation was carried out by methods of nonlinear analysis in semi-ordered spaces, in particular, using the theory of heterotone operators by V.I. Opoǐcev.
issn 2308-5878
url https://nasplib.isofts.kiev.ua/handle/123456789/162227
fulltext
citation_txt Застосування методу квазіфункцій Гріна-Рвачова для побудови двобічних наближень до розв'язку задачі Діріхле для нелінійного рівняння теплопровідності / М.В. Сидоров // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2018. — Вип. 18. — С. 146-161. — Бібліогр.: 16 назв. — укр.
work_keys_str_mv AT sidorovmv zastosuvannâmetodukvazífunkcíigrínarvačovadlâpobudovidvobíčnihnabliženʹdorozvâzkuzadačídíríhledlânelíníinogorívnânnâteploprovídností
AT sidorovmv theapplicationofthegreenrvachevquasifunctionmethodforconstructingtwosidedapproximationstothesolutionofthedirichletproblemforanonlinearheatequation
first_indexed 2025-11-24T15:20:06Z
last_indexed 2025-11-24T15:20:06Z
_version_ 1850847954443698176