Оптимізаційні питання оцінювання щільності на реальних даних
Для оцінювання щільності статистичного розподілу часто застосовують підхід максимальної ентропії, рівносильний підходу максимальної правдоподібності. Однак на малих наборах вхідних даних такий підхід дає надлишковість оцінки. Надлишковість оцінки можна усувати такими методами згладження як регуляриз...
Saved in:
| Published in: | Штучний інтелект |
|---|---|
| Date: | 2017 |
| Main Authors: | , , , |
| Format: | Article |
| Language: | Ukrainian |
| Published: |
Інститут проблем штучного інтелекту МОН України та НАН України
2017
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/162345 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Оптимізаційні питання оцінювання щільності на реальних даних / В.М. Горбачук, М.С. Дунаєвський, А.А. Сирку, С.Б. Сулейманов // Штучний інтелект. — 2017. — № 3-4. — С. 106-115. — Бібліогр.: 39 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Для оцінювання щільності статистичного розподілу часто застосовують підхід максимальної ентропії, рівносильний підходу максимальної правдоподібності. Однак на малих наборах вхідних даних такий підхід дає надлишковість оцінки. Надлишковість оцінки можна усувати такими методами згладження як регуляризація чи переформулювання обмежень.
The maximum entropy approach, equivalent to the maximum likelihood approach, is often applied to estimation of density for a statitistical distribution. But such an approach produces estimate overfitting on small sets of input data. The estimate overfitting can be eiliminated by such smoothing techniques as regularization or reformulation of constraints.
|
|---|---|
| ISSN: | 1561-5359 |