Особенности разработки искусственной нейронной сети гибридной экспертной системы

В предложенной статье были описаны основы разработки искусственной нейронной сети в качестве одной из составных частей гибридной экспертной системы для противоаварийного управления. Рассмотрено функционирование нейронов, их реакция при различных условиях работы. Также представлена многослойная рекур...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Штучний інтелект
Дата:2018
Автори: Коновалов, С.Н., Егошина, А.А.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут проблем штучного інтелекту МОН України та НАН України 2018
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/162382
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Особенности разработки искусственной нейронной сети гибридной экспертной системы / С.Н. Коновалов, А.А. Егошина // Штучний інтелект. — 2018. — № 2 (80). — С. 139-143. — Бібліогр.: 7 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:В предложенной статье были описаны основы разработки искусственной нейронной сети в качестве одной из составных частей гибридной экспертной системы для противоаварийного управления. Рассмотрено функционирование нейронов, их реакция при различных условиях работы. Также представлена многослойная рекуррентная искусственная нейронная сеть, с использованием метода обратного распространения ошибки, в общем виде, и показано её обучение. Помимо этого, описано применение подобной сети для анализа и прогнозирования состояния работоспособности сложной технической системы. The proposed article described the basics of developing an artificial neural network as one of the components of a hybrid expert system for antifault control. The functioning of neurons, their reaction under various operating conditions are considered. A multilayer recurrent artificial neural network is also represented, using the method of back propagation of the error, in general form, and its training is shown. In addition, the application of such a network for analyzing and predicting the state of health of a complex technical system is described.
ISSN:1561-5359