Machine Learning approach for malware detection using executable files features extraction
A malicious software is generally an executable program which usually settles itself in the system, replicates by copying itself, and has a malicious effect. Modern antivirus systems detect malware by knowing its pattern and detect a new virus quite difficult. There are a lot of heuristic techniques...
Збережено в:
| Опубліковано в: : | Штучний інтелект |
|---|---|
| Дата: | 2018 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут проблем штучного інтелекту МОН України та НАН України
2018
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/162448 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Machine Learning approach for malware detection using executable files features extraction / A.A. Voranau, Y.V. Harakhavik // Штучний інтелект. — 2018. — № 3 (81). — С. 97-102. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | A malicious software is generally an executable program which usually settles itself in the system, replicates by copying itself, and has a malicious effect. Modern antivirus systems detect malware by knowing its pattern and detect a new virus quite difficult. There are a lot of heuristic techniques are used for detecting an unknown malware which are usually consume a lot of system memory and CPU resources. This load can be overcome by training a machine learning model which collects features from Portable Executable (PE) file which are used for identifying an unknown virus patterns. A technique to collect these features from PE file is proposed in this paper.
Вредоносное ПО, как правило, представляет собой исполняемую программу, которая обычно располага-ется в системе, реплицируется путем копирования и оказывает вредоносное воздействие. Современные анти-вирусные системы обнаруживают вредоносное ПО, зная его паттерн, а обнаруживать новый вирус довольно сложно. Существует множество эвристических методов, используемых для обнаружения неизвестных вредо-носных программ, которые обычно потребляют много системной памяти и ресурсов процессора. Эту нагрузку можно преодолеть путем обучения модели машинного обучения, которая собирает данные из Portable Executable (PE) файла, которые используются для идентификации неизвестных вирусных паттернов. В данной статье предлагается метод сбора этих характеристик из PE-файла.
|
|---|---|
| ISSN: | 1561-5359 |