Сверточные нейронные сети в задачах мониторинга состояния сельскохозяйственной растительности по данным аэрофотосъемки

В данной работе рассматривается задача распознавания состояния сельскохозяйственной раститель-ности по данным аэрофотосъемки различного пространственного разрешения. В качестве основы для рас-познавания используется классификатор, позволяющий осуществлять классификацию входного изображе-ния на три к...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Штучний інтелект
Datum:2018
Hauptverfasser: Ганченко, В.В., Дудкин, А.А.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут проблем штучного інтелекту МОН України та НАН України 2018
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/162449
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Сверточные нейронные сети в задачах мониторинга состояния сельскохозяйственной растительности по данным аэрофотосъемки / В.В. Ганченко, А.А. Дудкин // Штучний інтелект. — 2018. — № 3 (81). — С. 103-110. — Бібліогр.: 22 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:В данной работе рассматривается задача распознавания состояния сельскохозяйственной раститель-ности по данным аэрофотосъемки различного пространственного разрешения. В качестве основы для рас-познавания используется классификатор, позволяющий осуществлять классификацию входного изображе-ния на три класса: «здоровая растительность», «пораженная растительность» и «почва». Предложенный классификатор строится из двух сверточных нейронных сетей, позволяющих выполнять классификацию на два класса: «здоровая растительность» и «пораженная растительность», «растительность» и «почва». In the article a recognition task of agricultural vegetation using aerial images of different spatial resolution is considered. An image classifier is proposed that allows classifying image segments into three classes: “healthy vegeta-tion”, “diseased vegetation” and “soil”. This classifier is implemented by two convolution neural networks that previ-ously form two classes of vegetation state: “healthy vegetation”-“diseased vegetation” and “vegetation”-“soil”.
ISSN:1561-5359