О конфигурациях подпространств гильбертова пространства с фиксированными углами между ними

Досліджуються множина пезвідпих конфігурацій підпросторів гільбергового простору, де кут між кожними двома підпросторами с фіксованим. Це задача про *-зображення деяких алгебр, породжених ідемпотентами і залежних від параметрів (набору кутів). Виділено клас задач скінченного і ручного зображувальног...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Український математичний журнал
Дата:2004
Автори: Власенко, М.А., Попова, Н.Д.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут математики НАН України 2004
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/163676
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:О конфигурациях подпространств гильбертова пространства с фиксированными углами между ними / М.А. Власенко, Н.Д. Попова // Український математичний журнал. — 2004. — Т. 56, № 5. — С. 606–615. — Бібліогр.: 6 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Досліджуються множина пезвідпих конфігурацій підпросторів гільбергового простору, де кут між кожними двома підпросторами с фіксованим. Це задача про *-зображення деяких алгебр, породжених ідемпотентами і залежних від параметрів (набору кутів). Виділено клас задач скінченного і ручного зображувального типу, для них вказано умови па кути, за яких конфігурації підпросторів існують, і наведено опис усіх незвідних зображень. We investigate the set of irreducible configurations of subspaces of a Hilbert space for which the angle between every two subspaces is fixed. This is the problem of *-representations of certain algebras generated by idempotents and depending on parameters (on the set of angles). We separate the class of problems of finite and tame representation type. For these problems, we indicate conditions on angles under which the configurations of subspaces exist and describe all irreducible representations.
ISSN:1027-3190