Теорема Хелли и смежные результаты

З класичної теореми Хеллі неможна одержати інформацію про сім'ю опуклих компактів в n- вимірному евклідовому просторі, якщо відомо, що непусті перетини мають тільки підсім'ї, що складаються з k елементів, 0<k<n. Уточнено теорему Хеллі для такого випадку, а також досліджено поведінку...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Український математичний журнал
Дата:2002
Автор: Зелинский, Ю.Б.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут математики НАН України 2002
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/163706
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Теорема Хелли и смежные результаты / Ю.Б. Зелинский // Український математичний журнал. — 2002. — Т. 54, № 1. — С. 125–128. — Бібліогр.: 3 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:З класичної теореми Хеллі неможна одержати інформацію про сім'ю опуклих компактів в n- вимірному евклідовому просторі, якщо відомо, що непусті перетини мають тільки підсім'ї, що складаються з k елементів, 0<k<n. Уточнено теорему Хеллі для такого випадку, а також досліджено поведінку узагальнено опуклих сімей. By using the classical Helly theorem, one cannot obtain information about a family of convex compact sets in the n-dimensional Euclidean space if it is known that only subfamilies consisting of k elements, 0 < k ≤ n, have nonempty intersections. We modify the Helly theorem to fix this issue and investigate the behavior of generalized convex families.
ISSN:1027-3190